Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Nov;40(11):2500–2504. doi: 10.1128/aac.40.11.2500

Genetic organization and distribution of tetracycline resistance determinants in Clostridium perfringens.

D Lyras 1, J I Rood 1
PMCID: PMC163564  PMID: 8913453

Abstract

The Tet P determinant from the conjugative Clostridium perfringens R plasmid pCW3 two functional overlapping tetracycline resistance genes, tetA(P) and tetB(P). The tetA(P) gene encodes a putative 46-kDa transmembrane protein which mediates active efflux of tetracycline from the cell, while tetB(P) encodes a putative 72.6-kDa protein which has significant similarity to Tet M-like tetracycline resistance proteins (J. Sloan, L.M. McMurry, D. Lyras, S. B. Levy, and J. I. Rood, Mol. Microbiol. 11:403-415, 1994). In the present study, hybridization and PCR analysis of 81 tetracycline-resistant isolates of C. perfringens showed that they all carried the tetA(P) gene. Most of these isolates (93%) carried a second tetracycline resistance gene, with 53% carrying tetB(P) and 40% carrying a tet(M)-like gene. Despite the wide distribution of the tetB(P) and tet(M) genes, no isolate which carried both of these determinants was detected. In isolates that carried both tetA(P) and tetB(P) these genes overlapped, as in pCW3. Isolates carrying this combination of genes originated from diverse geographical locations and environmental sources. The single Clostridium paraputrificum isolate examined carried tetA(P), indicating that this gene is not confined to C.perfringens. However, neither tetA(P) nor tetB(P) was detected in the nine Clostridium difficile isolates tested. Nucleotide sequence analysis of isolates lacking tetB(P) revealed that they contained the tetA408(P) gene, which lacked the codons for the 12 carboxy-terminal amino acids of the TetA(P) protein.

Full Text

The Full Text of this article is available as a PDF (217.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham L. J., Berryman D. I., Rood J. I. Hybridization analysis of the class P tetracycline resistance determinant from the Clostridium perfringens R-plasmid, pCW3. Plasmid. 1988 Mar;19(2):113–120. doi: 10.1016/0147-619x(88)90050-9. [DOI] [PubMed] [Google Scholar]
  2. Abraham L. J., Rood J. I. Cloning and analysis of the Clostridium perfringens tetracycline resistance plasmid, pCW3. Plasmid. 1985 May;13(3):155–162. doi: 10.1016/0147-619x(85)90038-1. [DOI] [PubMed] [Google Scholar]
  3. Abraham L. J., Rood J. I. Molecular analysis of transferable tetracycline resistance plasmids from Clostridium perfringens. J Bacteriol. 1985 Feb;161(2):636–640. doi: 10.1128/jb.161.2.636-640.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Abraham L. J., Wales A. J., Rood J. I. Worldwide distribution of the conjugative Clostridium perfringens tetracycline resistance plasmid, pCW3. Plasmid. 1985 Jul;14(1):37–46. doi: 10.1016/0147-619x(85)90030-7. [DOI] [PubMed] [Google Scholar]
  5. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  6. Brefort G., Magot M., Ionesco H., Sebald M. Characterization and transferability of Clostridium perfringens plasmids. Plasmid. 1977 Nov;1(1):52–66. doi: 10.1016/0147-619x(77)90008-7. [DOI] [PubMed] [Google Scholar]
  7. Burdett V., Inamine J., Rajagopalan S. Heterogeneity of tetracycline resistance determinants in Streptococcus. J Bacteriol. 1982 Mar;149(3):995–1004. doi: 10.1128/jb.149.3.995-1004.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burdett V. Nucleotide sequence of the tet(M) gene of Tn916. Nucleic Acids Res. 1990 Oct 25;18(20):6137–6137. doi: 10.1093/nar/18.20.6137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Flannagan S. E., Zitzow L. A., Su Y. A., Clewell D. B. Nucleotide sequence of the 18-kb conjugative transposon Tn916 from Enterococcus faecalis. Plasmid. 1994 Nov;32(3):350–354. doi: 10.1006/plas.1994.1077. [DOI] [PubMed] [Google Scholar]
  10. Gawron-Burke C., Clewell D. B. Regeneration of insertionally inactivated streptococcal DNA fragments after excision of transposon Tn916 in Escherichia coli: strategy for targeting and cloning of genes from gram-positive bacteria. J Bacteriol. 1984 Jul;159(1):214–221. doi: 10.1128/jb.159.1.214-221.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Miyoshi Y., Higa A. Interrelationship between drug resistance and bacteriocinogeny of Clostridium perfringens. Microbiol Immunol. 1984;28(3):281–289. doi: 10.1111/j.1348-0421.1984.tb00680.x. [DOI] [PubMed] [Google Scholar]
  12. Nakamura S., Yamakawa K., Nakashio S., Kamiya S., Nishida S. Correlation between susceptibility to chloramphenicol, tetracycline and clindamycin, and serogroups of Clostridium difficile. Med Microbiol Immunol. 1987;176(2):79–82. doi: 10.1007/BF00200678. [DOI] [PubMed] [Google Scholar]
  13. Quigley N. B., Reeves P. R. Chloramphenicol resistance cloning vector based on pUC9. Plasmid. 1987 Jan;17(1):54–57. doi: 10.1016/0147-619x(87)90008-4. [DOI] [PubMed] [Google Scholar]
  14. Roberts M. C., McFarland L. V., Mullany P., Mulligan M. E. Characterization of the genetic basis of antibiotic resistance in Clostridium difficile. J Antimicrob Chemother. 1994 Mar;33(3):419–429. doi: 10.1093/jac/33.3.419. [DOI] [PubMed] [Google Scholar]
  15. Rood J. I., Buddle J. R., Wales A. J., Sidhu R. The occurrence of antibiotic resistance in Clostridium perfringens from pigs. Aust Vet J. 1985 Aug;62(8):276–279. doi: 10.1111/j.1751-0813.1985.tb14251.x. [DOI] [PubMed] [Google Scholar]
  16. Rood J. I., Cole S. T. Molecular genetics and pathogenesis of Clostridium perfringens. Microbiol Rev. 1991 Dec;55(4):621–648. doi: 10.1128/mr.55.4.621-648.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rood J. I., Maher E. A., Somers E. B., Campos E., Duncan C. L. Isolation and characterization of multiply antibiotic-resistant Clostridum perfringens strains from porcine feces. Antimicrob Agents Chemother. 1978 May;13(5):871–880. doi: 10.1128/aac.13.5.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rood J. I. Transferable tetracycline resistance in Clostridium perfringens strains of porcine origin. Can J Microbiol. 1983 Oct;29(10):1241–1246. doi: 10.1139/m83-193. [DOI] [PubMed] [Google Scholar]
  19. Saksena N. K., Truffaut N. Cloning of tetracycline-resistance genes from various strains of Clostridium perfringens and expression in Escherichia coli. Can J Microbiol. 1992 Mar;38(3):215–221. doi: 10.1139/m92-036. [DOI] [PubMed] [Google Scholar]
  20. Scott P. T., Rood J. I. Electroporation-mediated transformation of lysostaphin-treated Clostridium perfringens. Gene. 1989 Oct 30;82(2):327–333. doi: 10.1016/0378-1119(89)90059-0. [DOI] [PubMed] [Google Scholar]
  21. Sloan J., McMurry L. M., Lyras D., Levy S. B., Rood J. I. The Clostridium perfringens Tet P determinant comprises two overlapping genes: tetA(P), which mediates active tetracycline efflux, and tetB(P), which is related to the ribosomal protection family of tetracycline-resistance determinants. Mol Microbiol. 1994 Jan;11(2):403–415. doi: 10.1111/j.1365-2958.1994.tb00320.x. [DOI] [PubMed] [Google Scholar]
  22. Smith C. J., Markowitz S. M., Macrina F. L. Transferable tetracycline resistance in Clostridium difficile. Antimicrob Agents Chemother. 1981 Jun;19(6):997–1003. doi: 10.1128/aac.19.6.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Su Y. A., He P., Clewell D. B. Characterization of the tet(M) determinant of Tn916: evidence for regulation by transcription attenuation. Antimicrob Agents Chemother. 1992 Apr;36(4):769–778. doi: 10.1128/aac.36.4.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Taylor D. E., Chau A. Tetracycline resistance mediated by ribosomal protection. Antimicrob Agents Chemother. 1996 Jan;40(1):1–5. doi: 10.1128/aac.40.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Traub W. H. Comparative in vitro bactericidal activity of 24 antimicrobial drugs against Clostridium perfringens. Chemotherapy. 1990;36(2):127–135. doi: 10.1159/000238758. [DOI] [PubMed] [Google Scholar]
  26. Wüst J., Hardegger U. Transferable resistance to clindamycin, erythromycin, and tetracycline in Clostridium difficile. Antimicrob Agents Chemother. 1983 May;23(5):784–786. doi: 10.1128/aac.23.5.784. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES