Abstract
The use of azole prophylaxis as a measure to prevent invasive fungal infections in high-risk patients is increasing and is now the standard of care in many institutions. Previous studies disagree on whether preexposure of Candida albicans to azoles affects their subsequent susceptibility to amphotericin B (AmB). The present in vitro study indicates that azole exposure generates a subpopulation of cells that are not affected by subsequent exposure to AmB. These cells that are phenotypically resistant to AmB tolerated by most cells not exposed to azole. The percentage of cells that convert to phenotypic resistance to AmB varies with the concentration and the azole. Itraconazole is more effective than fluconazole in generating cells that are phenotypically resistant to AmB and that tolerate an otherwise lethal transient exposure to AmB. Until cells that are not exposed to fluconazole are simultaneously challenged with AmB, they are not protected to a significant extent from killing by AmB. Cells that are challenged with continuous exposure to AmB also acquire phenotypic resistance to AmB at increased frequencies by azole preexposure, but this requires that the azole be continuously present during incubation with AmB. In addition, Candida cells taken from mature colonies that are not actively growing are not susceptible to the short-term killing effects of AmB without azole preexposure. The adaptive responses of C. albicans to AmB and potentially other antifungal agents that may result from prior exposure to azoles in vitro or potentially in microenvironments in vivo that induce physiological changes may have major clinical implications.
Full Text
The Full Text of this article is available as a PDF (190.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barchiesi F., Colombo A. L., McGough D. A., Rinaldi M. G. Comparative study of broth macrodilution and microdilution techniques for in vitro antifungal susceptibility testing of yeasts by using the National Committee for Clinical Laboratory Standards' proposed standard. J Clin Microbiol. 1994 Oct;32(10):2494–2500. doi: 10.1128/jcm.32.10.2494-2500.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bastide M., Jouvert S., Bastide J. M. A comparison of the effects of several antifungal imidazole derivatives and polyenes on Candida albicans: an ultrastructural study by scanning electron microscopy. Can J Microbiol. 1982 Oct;28(10):1119–1126. doi: 10.1139/m82-166. [DOI] [PubMed] [Google Scholar]
- Ben-Yaacov R., Knoller S., Caldwell G. A., Becker J. M., Koltin Y. Candida albicans gene encoding resistance to benomyl and methotrexate is a multidrug resistance gene. Antimicrob Agents Chemother. 1994 Apr;38(4):648–652. doi: 10.1128/aac.38.4.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brajtburg J., Kobayashi D., Medoff G., Kobayashi G. S. Antifungal action of amphotericin B in combination with other polyene or imidazole antibiotics. J Infect Dis. 1982 Aug;146(2):138–146. doi: 10.1093/infdis/146.2.138. [DOI] [PubMed] [Google Scholar]
- Cassone A., Kerridge D., Gale E. F. Ultrastructural changes in the cell wall of Candida albicans following cessation of growth and their possible relationship to the development of polyene resistance. J Gen Microbiol. 1979 Feb;110(2):339–349. doi: 10.1099/00221287-110-2-339. [DOI] [PubMed] [Google Scholar]
- Chalkley L. J., Trinci A. P., Pope A. M. Effect of mycolase and amphotericin B on Candida albicans and Candida pseudotropicalis in vitro and in vivo. Sabouraudia. 1985 Jun;23(3):147–164. [PubMed] [Google Scholar]
- Clark F. S., Parkinson T., Hitchcock C. A., Gow N. A. Correlation between rhodamine 123 accumulation and azole sensitivity in Candida species: possible role for drug efflux in drug resistance. Antimicrob Agents Chemother. 1996 Feb;40(2):419–425. doi: 10.1128/aac.40.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cosgrove R. F., Beezer A. E., Miles R. J. In vitro studies of amphotericin B in combination with the imidazole antifungal compounds clotrimazole and miconazole. J Infect Dis. 1978 Nov;138(5):681–685. [PubMed] [Google Scholar]
- De Nollin S., Borgers M. Scanning electron microscopy of Candida albicans after in vitro treatment with miconazole. Antimicrob Agents Chemother. 1975 May;7(5):704–711. doi: 10.1128/aac.7.5.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Nollin S., Borgers M. The ultrastructure of Candida albicans after in vitro treatment with miconazole. Sabouraudia. 1974 Nov;12(3):341–351. [PubMed] [Google Scholar]
- Fling M. E., Kopf J., Tamarkin A., Gorman J. A., Smith H. A., Koltin Y. Analysis of a Candida albicans gene that encodes a novel mechanism for resistance to benomyl and methotrexate. Mol Gen Genet. 1991 Jun;227(2):318–329. doi: 10.1007/BF00259685. [DOI] [PubMed] [Google Scholar]
- Gale E. F., Ingram J., Kerridge D., Notario V., Wayman F. Reduction of amphotericin resistance in stationary phase cultures of Candida albicans by treatment with enzymes. J Gen Microbiol. 1980 Apr;117(2):383–391. doi: 10.1099/00221287-117-2-383. [DOI] [PubMed] [Google Scholar]
- Gale E. F., Johnson A. M., Kerridge D., Koh T. Y. Factors affecting the changes in amphotericin sensitivity of Candida albicans during growth. J Gen Microbiol. 1975 Mar;87(1):20–36. doi: 10.1099/00221287-87-1-20. [DOI] [PubMed] [Google Scholar]
- Gale E. F., Johnson A. M., Kerridge D., Wayman F. Phenotypic resistance to miconazole and amphotericin B in Candida albicans. J Gen Microbiol. 1980 Apr;117(2):535–538. doi: 10.1099/00221287-117-2-535. [DOI] [PubMed] [Google Scholar]
- Gale E. F. Nature and development of phenotypic resistance to amphotericin B in Candida albicans. Adv Microb Physiol. 1986;27:277–320. doi: 10.1016/s0065-2911(08)60307-0. [DOI] [PubMed] [Google Scholar]
- Gallis H. A., Drew R. H., Pickard W. W. Amphotericin B: 30 years of clinical experience. Rev Infect Dis. 1990 Mar-Apr;12(2):308–329. doi: 10.1093/clinids/12.2.308. [DOI] [PubMed] [Google Scholar]
- Geber A., Hitchcock C. A., Swartz J. E., Pullen F. S., Marsden K. E., Kwon-Chung K. J., Bennett J. E. Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility. Antimicrob Agents Chemother. 1995 Dec;39(12):2708–2717. doi: 10.1128/aac.39.12.2708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghannoum M. A., Fu Y., Ibrahim A. S., Mortara L. A., Shafiq M. C., Edwards J. E., Jr, Criddle R. S. In vitro determination of optimal antifungal combinations against Cryptococcus neoformans and Candida albicans. Antimicrob Agents Chemother. 1995 Nov;39(11):2459–2465. doi: 10.1128/aac.39.11.2459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghannoum M. A., Rex J. H., Galgiani J. N. Susceptibility testing of fungi: current status of correlation of in vitro data with clinical outcome. J Clin Microbiol. 1996 Mar;34(3):489–495. doi: 10.1128/jcm.34.3.489-495.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldway M., Teff D., Schmidt R., Oppenheim A. B., Koltin Y. Multidrug resistance in Candida albicans: disruption of the BENr gene. Antimicrob Agents Chemother. 1995 Feb;39(2):422–426. doi: 10.1128/aac.39.2.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes C. E., Harris C., Moody J. A., Peterson L. R., Gerding D. N. In vitro activities of amphotericin B in combination with four antifungal agents and rifampin against Aspergillus spp. Antimicrob Agents Chemother. 1984 May;25(5):560–562. doi: 10.1128/aac.25.5.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin E., Maier F., Bhakdi S. Antagonistic effects of fluconazole and 5-fluorocytosine on candidacidal action of amphotericin B in human serum. Antimicrob Agents Chemother. 1994 Jun;38(6):1331–1338. doi: 10.1128/aac.38.6.1331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mikami Y., Scalarone G. M., Kurita N., Yazawa K., Uno J., Miyaji M. Synergistic postantifungal effect of flucytosine and fluconazole on Candida albicans. J Med Vet Mycol. 1992;30(3):197–206. doi: 10.1080/02681219280000261. [DOI] [PubMed] [Google Scholar]
- Mikami Y., Takahashi A., Yazawa K., Terao K., Ueno Y. Synergistic interaction of miconazole and fluconazole at sub-MIC level on Candida albicans. Mycoses. 1992 Nov-Dec;35(11-12):321–327. doi: 10.1111/j.1439-0507.1992.tb00888.x. [DOI] [PubMed] [Google Scholar]
- Notario V., Gale E. F., Kerridge D., Wayman F. Phenotypic resistance to amphotericin B in Candida albicans: relationship to glucan metabolism. J Gen Microbiol. 1982 Apr;128(4):761–777. doi: 10.1099/00221287-128-4-761. [DOI] [PubMed] [Google Scholar]
- Odds F. C. Interactions among amphotericin B, 5-fluorocytosine, ketoconazole, and miconazole against pathogenic fungi in vitro. Antimicrob Agents Chemother. 1982 Nov;22(5):763–770. doi: 10.1128/aac.22.5.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parkinson T., Falconer D. J., Hitchcock C. A. Fluconazole resistance due to energy-dependent drug efflux in Candida glabrata. Antimicrob Agents Chemother. 1995 Aug;39(8):1696–1699. doi: 10.1128/aac.39.8.1696. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rex J. H., Rinaldi M. G., Pfaller M. A. Resistance of Candida species to fluconazole. Antimicrob Agents Chemother. 1995 Jan;39(1):1–8. doi: 10.1128/aac.39.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Safe L. M., Safe S. H., Subden R. E., Morris D. C. Sterol content and polyene antibiotic resistance in isolates of Candida krusei, Candida parakrusei, and Candida tropicalis. Can J Microbiol. 1977 Apr;23(4):398–401. doi: 10.1139/m77-058. [DOI] [PubMed] [Google Scholar]
- Sanglard D., Kuchler K., Ischer F., Pagani J. L., Monod M., Bille J. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother. 1995 Nov;39(11):2378–2386. doi: 10.1128/aac.39.11.2378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scalarone G. M., Mikami Y., Kurita N., Yazawa K., Miyaji M. Comparative studies on the postantifungal effect produced by the synergistic interaction of flucytosine and amphotericin B on Candida albicans. Mycopathologia. 1992 Dec;120(3):133–138. doi: 10.1007/BF00436389. [DOI] [PubMed] [Google Scholar]
- Schacter L. P., Owellen R. J., Rathbun H. K., Buchanan B. Letter: Antagonism between miconazole and amphotericin B. Lancet. 1976 Aug 7;2(7980):318–318. doi: 10.1016/s0140-6736(76)90774-1. [DOI] [PubMed] [Google Scholar]
- Schaffner A., Böhler A. Amphotericin B refractory aspergillosis after itraconazole: evidence for significant antagonism. Mycoses. 1993 Nov-Dec;36(11-12):421–424. doi: 10.1111/j.1439-0507.1993.tb00732.x. [DOI] [PubMed] [Google Scholar]
- Scheven M., Scheven M. L. Interaction between azoles and amphotericin B in the treatment of candidiasis. Clin Infect Dis. 1995 Apr;20(4):1079–1079. doi: 10.1093/clinids/20.4.1079. [DOI] [PubMed] [Google Scholar]
- Scheven M., Schwegler F. Antagonistic interactions between azoles and amphotericin B with yeasts depend on azole lipophilia for special test conditions in vitro. Antimicrob Agents Chemother. 1995 Aug;39(8):1779–1783. doi: 10.1128/aac.39.8.1779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scheven M., Senf L. Quantitative determination of fluconazole-amphotericin B antagonism to Candida albicans by agar diffusion. Mycoses. 1994 Jun-Jul;37(5-6):205–207. doi: 10.1111/j.1439-0507.1994.tb00301.x. [DOI] [PubMed] [Google Scholar]
- Shimokawa O., Nakayama H. Increased sensitivity of Candida albicans cells accumulating 14 alpha-methylated sterols to active oxygen: possible relevance to in vivo efficacies of azole antifungal agents. Antimicrob Agents Chemother. 1992 Aug;36(8):1626–1629. doi: 10.1128/aac.36.8.1626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith H. A., Gorman J. W., Koltin Y., Gorman J. A. Functional expression of the Candida albicans beta-tubulin gene in Saccharomyces cerevisiae. Gene. 1990 May 31;90(1):115–123. doi: 10.1016/0378-1119(90)90446-x. [DOI] [PubMed] [Google Scholar]
- Sud I. J., Feingold D. S. Effect of ketoconazole on the fungicidal action of amphotericin B in Candida albicans. Antimicrob Agents Chemother. 1983 Jan;23(1):185–187. doi: 10.1128/aac.23.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sugar A. M. Use of amphotericin B with azole antifungal drugs: what are we doing? Antimicrob Agents Chemother. 1995 Sep;39(9):1907–1912. doi: 10.1128/aac.39.9.1907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watson P. F., Rose M. E., Kelly S. L. Isolation and analysis of ketoconazole resistant mutants of Saccharomyces cerevisiae. J Med Vet Mycol. 1988 Jun;26(3):153–162. doi: 10.1080/02681218880000231. [DOI] [PubMed] [Google Scholar]
- Woods R. A., Bard M., Jackson I. E., Drutz D. J. Resistance to polyene antibiotics and correlated sterol changes in two isolates of Candida tropicalis from a patient with an amphotericin B-resistant funguria. J Infect Dis. 1974 Jan;129(1):53–58. doi: 10.1093/infdis/129.1.53. [DOI] [PubMed] [Google Scholar]
- van Etten E. W., van de Rhee N. E., van Kampen K. M., Bakker-Woudenberg I. A. Effects of amphotericin B and fluconazole on the extracellular and intracellular growth of Candida albicans. Antimicrob Agents Chemother. 1991 Nov;35(11):2275–2281. doi: 10.1128/aac.35.11.2275. [DOI] [PMC free article] [PubMed] [Google Scholar]