Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Nov;40(11):2517–2522. doi: 10.1128/aac.40.11.2517

Theoretical aspects of antibiotic diffusion into microbial biofilms.

P S Stewart 1
PMCID: PMC163567  PMID: 8913456

Abstract

Antibiotic penetration into microbial biofilm was investigated theoretically by the solution of mathematical equations describing various combinations of the processes of diffusion, sorption, and reaction. Unsteady material balances on the antibiotic and on a reactive or sorptive biomass constituent, along with associated boundary and initial conditions, constitute the mathematical formulations. Five cases were examined: diffusion of a noninteracting solute; diffusion of a reversibly sorbing, nonreacting solute; diffusion of an irreversibly sorbing, nonreacting solute; diffusion of a stoichiometrically reacting solute; and diffusion of a catalytically reacting solute. A noninteracting solute was predicted to penetrate biofilms of up to 1 mm in thickness relatively quickly, within a matter of seconds or minutes. In the case of a solute that does not sorb or react in the biofilm, therefore, the diffusion barrier is not nearly large enough to account for the reduced susceptibility of biofilms to antibiotics. Reversible and irreversible sorption retards antibiotic penetration. On the basis of data available in the literature at this point, the extent of retardation of antibiotic diffusion due to sorption does not appear to be sufficient to account for reduced biofilm susceptibility. A catalytic (e.g., enzymatic) reaction, provided it is sufficiently rapid, can lead to severe antibiotic penetration failure. For example, calculation of beta-lactam penetration indicated that the reaction-diffusion mechanism may be a viable explanation for failure of certain of these agents to control biofilm infections. The theory presented in this study provides a framework for the design and analysis of experiments to test these mechanisms of reduced biofilm susceptibility to antibiotics.

Full Text

The Full Text of this article is available as a PDF (225.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison D. G., Matthews M. J. Effect of polysaccharide interactions on antibiotic susceptibility of Pseudomonas aeruginosa. J Appl Bacteriol. 1992 Dec;73(6):484–488. doi: 10.1111/j.1365-2672.1992.tb05009.x. [DOI] [PubMed] [Google Scholar]
  2. Bolister N., Basker M., Hodges N. A., Marriott C. The diffusion of beta-lactam antibiotics through mixed gels of cystic fibrosis-derived mucin and Pseudomonas aeruginosa alginate. J Antimicrob Chemother. 1991 Mar;27(3):285–293. doi: 10.1093/jac/27.3.285. [DOI] [PubMed] [Google Scholar]
  3. Brown M. R., Gilbert P. Sensitivity of biofilms to antimicrobial agents. J Appl Bacteriol. 1993;74 (Suppl):87S–97S. doi: 10.1111/j.1365-2672.1993.tb04345.x. [DOI] [PubMed] [Google Scholar]
  4. Costerton J. W., Cheng K. J., Geesey G. G., Ladd T. I., Nickel J. C., Dasgupta M., Marrie T. J. Bacterial biofilms in nature and disease. Annu Rev Microbiol. 1987;41:435–464. doi: 10.1146/annurev.mi.41.100187.002251. [DOI] [PubMed] [Google Scholar]
  5. Costerton J. W., Lewandowski Z., DeBeer D., Caldwell D., Korber D., James G. Biofilms, the customized microniche. J Bacteriol. 1994 Apr;176(8):2137–2142. doi: 10.1128/jb.176.8.2137-2142.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Darouiche R. O., Dhir A., Miller A. J., Landon G. C., Raad I. I., Musher D. M. Vancomycin penetration into biofilm covering infected prostheses and effect on bacteria. J Infect Dis. 1994 Sep;170(3):720–723. doi: 10.1093/infdis/170.3.720. [DOI] [PubMed] [Google Scholar]
  7. De Beer D., Srinivasan R., Stewart P. S. Direct measurement of chlorine penetration into biofilms during disinfection. Appl Environ Microbiol. 1994 Dec;60(12):4339–4344. doi: 10.1128/aem.60.12.4339-4344.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dibdin G. H. A finite-difference computer model of solute diffusion in bacterial films with simultaneous metabolism and chemical reaction. Comput Appl Biosci. 1992 Oct;8(5):489–500. doi: 10.1093/bioinformatics/8.5.489. [DOI] [PubMed] [Google Scholar]
  9. Dunne W. M., Jr, Mason E. O., Jr, Kaplan S. L. Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother. 1993 Dec;37(12):2522–2526. doi: 10.1128/aac.37.12.2522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Giwercman B., Jensen E. T., Høiby N., Kharazmi A., Costerton J. W. Induction of beta-lactamase production in Pseudomonas aeruginosa biofilm. Antimicrob Agents Chemother. 1991 May;35(5):1008–1010. doi: 10.1128/aac.35.5.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gordon C. A., Hodges N. A., Marriott C. Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived Pseudomonas aeruginosa. J Antimicrob Chemother. 1988 Nov;22(5):667–674. doi: 10.1093/jac/22.5.667. [DOI] [PubMed] [Google Scholar]
  12. Gristina A. G., Hobgood C. D., Webb L. X., Myrvik Q. N. Adhesive colonization of biomaterials and antibiotic resistance. Biomaterials. 1987 Nov;8(6):423–426. doi: 10.1016/0142-9612(87)90077-9. [DOI] [PubMed] [Google Scholar]
  13. Hewinson R. G., Nichols W. W. Temperature-dependent expression of the chromosomal beta-lactamase gene in a strain of Pseudomonas aeruginosa. J Med Microbiol. 1987 Nov;24(3):263–265. doi: 10.1099/00222615-24-3-263. [DOI] [PubMed] [Google Scholar]
  14. Hoyle B. D., Alcantara J., Costerton J. W. Pseudomonas aeruginosa biofilm as a diffusion barrier to piperacillin. Antimicrob Agents Chemother. 1992 Sep;36(9):2054–2056. doi: 10.1128/aac.36.9.2054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hoyle B. D., Costerton J. W. Bacterial resistance to antibiotics: the role of biofilms. Prog Drug Res. 1991;37:91–105. doi: 10.1007/978-3-0348-7139-6_2. [DOI] [PubMed] [Google Scholar]
  16. Kumon H., Tomochika K., Matunaga T., Ogawa M., Ohmori H. A sandwich cup method for the penetration assay of antimicrobial agents through Pseudomonas exopolysaccharides. Microbiol Immunol. 1994;38(8):615–619. doi: 10.1111/j.1348-0421.1994.tb01831.x. [DOI] [PubMed] [Google Scholar]
  17. Martin D. W., Schurr M. J., Yu H., Deretic V. Analysis of promoters controlled by the putative sigma factor AlgU regulating conversion to mucoidy in Pseudomonas aeruginosa: relationship to sigma E and stress response. J Bacteriol. 1994 Nov;176(21):6688–6696. doi: 10.1128/jb.176.21.6688-6696.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nichols W. W., Dorrington S. M., Slack M. P., Walmsley H. L. Inhibition of tobramycin diffusion by binding to alginate. Antimicrob Agents Chemother. 1988 Apr;32(4):518–523. doi: 10.1128/aac.32.4.518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nichols W. W., Evans M. J., Slack M. P., Walmsley H. L. The penetration of antibiotics into aggregates of mucoid and non-mucoid Pseudomonas aeruginosa. J Gen Microbiol. 1989 May;135(5):1291–1303. doi: 10.1099/00221287-135-5-1291. [DOI] [PubMed] [Google Scholar]
  20. Stewart P. S. Biofilm accumulation model that predicts antibiotic resistance of Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 1994 May;38(5):1052–1058. doi: 10.1128/aac.38.5.1052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Suci P. A., Mittelman M. W., Yu F. P., Geesey G. G. Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 1994 Sep;38(9):2125–2133. doi: 10.1128/aac.38.9.2125. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES