Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Nov;40(11):2523–2528. doi: 10.1128/aac.40.11.2523

Distribution of genes encoding resistance to streptogramin A and related compounds among staphylococci resistant to these antibiotics.

J Allignet 1, S Aubert 1, A Morvan 1, N el Solh 1
PMCID: PMC163568  PMID: 8913457

Abstract

The levels of resistance to pristinamycin (Pt) and to its major constituents, pristinamycin IIA and IB (PIIA and PIB, respectively; classified as streptogramins A and B, respectively) were determined for 126 staphylococcal isolates. The results suggest tentative susceptibility breakpoints of < or = 2, < or = 8, and < or = 0.5 microgram/ml for PIIA, PIB, and Pt, respectively. Fifty-six isolates that were inhibited by > or = 4 micrograms of PIIA per ml were investigated for the presence of staphylococcal genes encoding resistance to PIIA (vga, vat, and vatB) and PIB (vgb). None of these genes was found in the 4 isolates inhibited by 4 micrograms of PIIA per ml or in 4 of the other 52 isolates tested. The remaining 48 isolates harbored plasmids carrying vatB and vga or combinations of genes (vga-vat-vgb or vga-vat). The absence of any known PIIA resistance gene from the four Staphylococcus aureus isolates inhibited by > or = 8 micrograms of PIIA per ml suggests that there is at least one PIIA resistance mechanism in staphylococci that has not yet been characterized.

Full Text

The Full Text of this article is available as a PDF (225.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allignet J., Loncle V., Mazodier P., el Solh N. Nucleotide sequence of a staphylococcal plasmid gene, vgb, encoding a hydrolase inactivating the B components of virginiamycin-like antibiotics. Plasmid. 1988 Nov;20(3):271–275. doi: 10.1016/0147-619x(88)90034-0. [DOI] [PubMed] [Google Scholar]
  2. Allignet J., Loncle V., Simenel C., Delepierre M., el Solh N. Sequence of a staphylococcal gene, vat, encoding an acetyltransferase inactivating the A-type compounds of virginiamycin-like antibiotics. Gene. 1993 Aug 16;130(1):91–98. doi: 10.1016/0378-1119(93)90350-c. [DOI] [PubMed] [Google Scholar]
  3. Allignet J., Loncle V., el Sohl N. Sequence of a staphylococcal plasmid gene, vga, encoding a putative ATP-binding protein involved in resistance to virginiamycin A-like antibiotics. Gene. 1992 Aug 1;117(1):45–51. doi: 10.1016/0378-1119(92)90488-b. [DOI] [PubMed] [Google Scholar]
  4. Allignet J., el Solh N. Diversity among the gram-positive acetyltransferases inactivating streptogramin A and structurally related compounds and characterization of a new staphylococcal determinant, vatB. Antimicrob Agents Chemother. 1995 Sep;39(9):2027–2036. doi: 10.1128/aac.39.9.2027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barberis-Maino L., Ryffel C., Kayser F. H., Berger-Bächi B. Complete nucleotide sequence of IS431mec in Staphylococcus aureus. Nucleic Acids Res. 1990 Sep 25;18(18):5548–5548. doi: 10.1093/nar/18.18.5548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barry A. L., Fuchs P. C. In vitro activities of a streptogramin (RP59500), three macrolides, and an azalide against four respiratory tract pathogens. Antimicrob Agents Chemother. 1995 Jan;39(1):238–240. doi: 10.1128/aac.39.1.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Berthaud N., Montay G., Conard B. J., Desnottes J. F. Bactericidal activity and kinetics of RP 59500 in a mouse model of Staphylococcus aureus septicaemia. J Antimicrob Chemother. 1995 Aug;36(2):365–373. doi: 10.1093/jac/36.2.365. [DOI] [PubMed] [Google Scholar]
  8. Bouanchaud D. H. In-vitro and in-vivo synergic activity and fractional inhibitory concentration (FIC) of the components of a semisynthetic streptogramin, RP 59500. J Antimicrob Chemother. 1992 Jul;30 (Suppl A):95–99. doi: 10.1093/jac/30.suppl_a.95. [DOI] [PubMed] [Google Scholar]
  9. Brun Y., Bes M., Boeufgras J. M., Monget D., Fleurette J., Auckenthaler R., Devriese L. A., Kocur M., Marples R. R., Piemont Y. International collaborative evaluation of the ATB 32 staph gallery for identification of the Staphylococcus species. Zentralbl Bakteriol. 1990 Aug;273(3):319–326. doi: 10.1016/s0934-8840(11)80435-4. [DOI] [PubMed] [Google Scholar]
  10. Chesneau O., Allignet J., el Solh N. Thermonuclease gene as a target nucleotide sequence for specific recognition of Staphylococcus aureus. Mol Cell Probes. 1993 Aug;7(4):301–310. doi: 10.1006/mcpr.1993.1044. [DOI] [PubMed] [Google Scholar]
  11. Chesneau O., Morvan A., Grimont F., Labischinski H., el Solh N. Staphylococcus pasteuri sp. nov., isolated from human, animal, and food specimens. Int J Syst Bacteriol. 1993 Apr;43(2):237–244. doi: 10.1099/00207713-43-2-237. [DOI] [PubMed] [Google Scholar]
  12. Cocito C. Antibiotics of the virginiamycin family, inhibitors which contain synergistic components. Microbiol Rev. 1979 Jun;43(2):145–192. doi: 10.1128/mr.43.2.145-192.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. De Buyser M. L., Morvan A., Aubert S., Dilasser F., el Solh N. Evaluation of a ribosomal RNA gene probe for the identification of species and subspecies within the genus Staphylococcus. J Gen Microbiol. 1992 May;138(5):889–899. doi: 10.1099/00221287-138-5-889. [DOI] [PubMed] [Google Scholar]
  14. De Buyser M. L., Morvan A., Grimont F., el Solh N. Characterization of Staphylococcus species by ribosomal RNA gene restriction patterns. J Gen Microbiol. 1989 Apr;135(4):989–999. doi: 10.1099/00221287-135-4-989. [DOI] [PubMed] [Google Scholar]
  15. Derbise A., Dyke K. G., el Solh N. Rearrangements in the staphylococcal beta-lactamase-encoding plasmid, pIP1066, including a DNA inversion that generates two alternative transposons. Mol Microbiol. 1995 Aug;17(4):769–779. doi: 10.1111/j.1365-2958.1995.mmi_17040769.x. [DOI] [PubMed] [Google Scholar]
  16. Dublanchet A., Soussy C. J., Squinazi F., Duval J. Résistance de Staphylococcus aureus aux streptogramines. Ann Microbiol (Paris) 1977 Apr;128A(3):277–287. [PubMed] [Google Scholar]
  17. Entenza J. M., Drugeon H., Glauser M. P., Moreillon P. Treatment of experimental endocarditis due to erythromycin-susceptible or -resistant methicillin-resistant Staphylococcus aureus with RP 59500. Antimicrob Agents Chemother. 1995 Jul;39(7):1419–1424. doi: 10.1128/aac.39.7.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fantin B., Leclercq R., Merlé Y., Saint-Julien L., Veyrat C., Duval J., Carbon C. Critical influence of resistance to streptogramin B-type antibiotics on activity of RP 59500 (quinupristin-dalfopristin) in experimental endocarditis due to Staphylococcus aureus. Antimicrob Agents Chemother. 1995 Feb;39(2):400–405. doi: 10.1128/aac.39.2.400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Johnson C. C., Slavoski L., Schwartz M., May P., Pitsakis P. G., Shur A. L., Levison M. E. In vitro activity of RP 59500 (quinupristin/dalfopristin) against antibiotic-resistant strains of Streptococcus pneumoniae and enterococci. Diagn Microbiol Infect Dis. 1995 Mar;21(3):169–173. doi: 10.1016/0732-8893(95)00068-l. [DOI] [PubMed] [Google Scholar]
  20. Kang S. L., Rybak M. J. Pharmacodynamics of RP 59500 alone and in combination with vancomycin against Staphylococcus aureus in an in vitro-infected fibrin clot model. Antimicrob Agents Chemother. 1995 Jul;39(7):1505–1511. doi: 10.1128/aac.39.7.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Leclercq R., Nantas L., Soussy C. J., Duval J. Activity of RP 59500, a new parenteral semisynthetic streptogramin, against staphylococci with various mechanisms of resistance to macrolide-lincosamide-streptogramin antibiotics. J Antimicrob Chemother. 1992 Jul;30 (Suppl A):67–75. doi: 10.1093/jac/30.suppl_a.67. [DOI] [PubMed] [Google Scholar]
  22. Loncle V., Casetta A., Buu-Hoi A., el Solh N. Analysis of pristinamycin-resistant Staphylococcus epidermidis isolates responsible for an outbreak in a Parisian hospital. Antimicrob Agents Chemother. 1993 Oct;37(10):2159–2165. doi: 10.1128/aac.37.10.2159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lorian V., Amaral L., Fernandes F. RP 59500 postantibiotic effect defined by bacterial ultrastructure. Drugs Exp Clin Res. 1995;21(3):125–128. [PubMed] [Google Scholar]
  24. Monzon-Moreno C., Aubert S., Morvan A., Solh N. E. Usefulness of three probes in typing isolates of methicillin-resistant Staphylococcus aureus (MRSA). J Med Microbiol. 1991 Aug;35(2):80–88. doi: 10.1099/00222615-35-2-80. [DOI] [PubMed] [Google Scholar]
  25. Neu H. C., Chin N. X., Gu J. W. The in-vitro activity of new streptogramins, RP 59500, RP 57669 and RP 54476, alone and in combination. J Antimicrob Chemother. 1992 Jul;30 (Suppl A):83–94. doi: 10.1093/jac/30.suppl_a.83. [DOI] [PubMed] [Google Scholar]
  26. Rende-Fournier R., Leclercq R., Galimand M., Duval J., Courvalin P. Identification of the satA gene encoding a streptogramin A acetyltransferase in Enterococcus faecium BM4145. Antimicrob Agents Chemother. 1993 Oct;37(10):2119–2125. doi: 10.1128/aac.37.10.2119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rouch D. A., Skurray R. A. IS257 from Staphylococcus aureus: member of an insertion sequence superfamily prevalent among gram-positive and gram-negative bacteria. Gene. 1989;76(2):195–205. doi: 10.1016/0378-1119(89)90160-1. [DOI] [PubMed] [Google Scholar]
  28. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  29. Struelens M. J., Deplano A., Godard C., Maes N., Serruys E. Epidemiologic typing and delineation of genetic relatedness of methicillin-resistant Staphylococcus aureus by macrorestriction analysis of genomic DNA by using pulsed-field gel electrophoresis. J Clin Microbiol. 1992 Oct;30(10):2599–2605. doi: 10.1128/jcm.30.10.2599-2605.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Torralba M. D., Frey S. E., Lagging L. M. Treatment of methicillin-resistant Staphylococcus aureus infection with quinupristin/dalfopristin. Clin Infect Dis. 1995 Aug;21(2):460–461. doi: 10.1093/clinids/21.2.460. [DOI] [PubMed] [Google Scholar]
  31. Walcher-Salesse S., Monzon-Moreno C., Aubert S., el Solh N. An epidemiological assessment of coagulase-negative staphylococci from an intensive care unit. J Med Microbiol. 1992 May;36(5):321–331. doi: 10.1099/00222615-36-5-321. [DOI] [PubMed] [Google Scholar]
  32. el Solh N., Allignet J., Bismuth R., Buret B., Fouace J. M. Conjugative transfer of staphylococcal antibiotic resistance markers in the absence of detectable plasmid DNA. Antimicrob Agents Chemother. 1986 Jul;30(1):161–169. doi: 10.1128/aac.30.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. el Solh N., Fouace J. M., Shalita Z., Bouanchaud D. H., Novick R. P., Chabbert Y. A. Epidemiological and structural studies of Staphylococcus aureus R plasmids mediating resistance to tobramycin and streptogramin. Plasmid. 1980 Jul;4(1):117–120. doi: 10.1016/0147-619x(80)90087-6. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES