Abstract
The activities of free and liposomal resorcinomycin A against Mycobacterium avium-Mycobacterium intracellulare complex (MAC) grown in broth and in murine peritoneal macrophages were evaluated. Liposomal resorcinomycin A was composed of dimyristoyl phosphatidylcholine and phosphatidylinositol at a molar ratio of 9:1. Both free resorcinomycin A and liposomal resorcinomycin A showed no toxicity to macrophages at concentrations up to 50 micrograms/ml, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. Minimal inhibitory concentrations of free resorcinomycin A and liposomal resorcinomycin A in broth were 6 and 12 micrograms/ml, respectively, as determined by the MTT colorimetric microassay. In macrophages, liposomal resorcinomycin A caused significantly higher intramacrophage antimycobacterial activity than the free form of the drug. At doses ranging from 6 to 50 micrograms/ml, liposomal resorcinomycin A caused 50 to 93% MAC growth inhibition, respectively (as determined by CFU), while free resorcinomycin A was associated with 33 to 62% MAC growth inhibition, respectively, 3 days after drug treatment. In addition, antimycobacterial activity of liposomal resorcinomycin A in macrophages was maintained 7 days after treatment, whereas the activity of free resorcinomycin A was reduced to negligible 3 days after treatment. In summary, liposome encapsulation of resorcinomycin A resulted in significant enhancement of antibacterial activity against intramacrophagic MAC infection.
Full Text
The Full Text of this article is available as a PDF (255.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashtekar D., Düzgünes N., Gangadharam P. R. Activity of free and liposome encapsulated streptomycin against Mycobacterium avium complex (MAC) inside peritoneal macrophages. J Antimicrob Chemother. 1991 Oct;28(4):615–617. doi: 10.1093/jac/28.4.615. [DOI] [PubMed] [Google Scholar]
- Baron E. J., Young L. S. Amikacin, ethambutol, and rifampin for treatment of disseminated Mycobacterium avium-intracellulare infections in patients with acquired immune deficiency syndrome. Diagn Microbiol Infect Dis. 1986 Sep;5(3):215–220. doi: 10.1016/0732-8893(86)90004-0. [DOI] [PubMed] [Google Scholar]
- Bergers J. J., ten Hagen T. L., van Etten E. W., Bakker-Woudenberg I. A. Liposomes as delivery systems in the prevention and treatment of infectious diseases. Pharm World Sci. 1995 Jan 27;17(1):1–11. doi: 10.1007/BF01875551. [DOI] [PubMed] [Google Scholar]
- Bermudez L. E. Use of liposome preparation to treat mycobacterial infections. Immunobiology. 1994 Oct;191(4-5):578–583. doi: 10.1016/S0171-2985(11)80465-1. [DOI] [PubMed] [Google Scholar]
- Bermudez L. E., Wu M., Young L. S. Intracellular killing of Mycobacterium avium complex by rifapentine and liposome-encapsulated amikacin. J Infect Dis. 1987 Sep;156(3):510–513. doi: 10.1093/infdis/156.3.510. [DOI] [PubMed] [Google Scholar]
- Bermudez L. E., Young L. S. Tumor necrosis factor, alone or in combination with IL-2, but not IFN-gamma, is associated with macrophage killing of Mycobacterium avium complex. J Immunol. 1988 May 1;140(9):3006–3013. [PubMed] [Google Scholar]
- Davidson P. T., Khanijo V., Goble M., Moulding T. S. Treatment of disease due to Mycobacterium intracellulare. Rev Infect Dis. 1981 Sep-Oct;3(5):1052–1059. doi: 10.1093/clinids/3.5.1052. [DOI] [PubMed] [Google Scholar]
- Desiderio J. V., Campbell S. G. Intraphagocytic killing of Salmonella typhimurium by liposome-encapsulated cephalothin. J Infect Dis. 1983 Sep;148(3):563–570. doi: 10.1093/infdis/148.3.563. [DOI] [PubMed] [Google Scholar]
- Douvas G. S., May M. H., Ross E., Crowle A. J. Characterization of inhibition of Mycobacterium avium replication in macrophages by normal human serum. Infect Immun. 1992 Feb;60(2):345–352. doi: 10.1128/iai.60.2.345-352.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Düzgüneş N., Ashtekar D. R., Flasher D. L., Ghori N., Debs R. J., Friend D. S., Gangadharam P. R. Treatment of Mycobacterium avium-intracellulare complex infection in beige mice with free and liposome-encapsulated streptomycin: role of liposome type and duration of treatment. J Infect Dis. 1991 Jul;164(1):143–151. doi: 10.1093/infdis/164.1.143. [DOI] [PubMed] [Google Scholar]
- Gangadharam P. R., Ashtekar D. A., Ghori N., Goldstein J. A., Debs R. J., Düzgünes N. Chemotherapeutic potential of free and liposome encapsulated streptomycin against experimental Mycobacterium avium complex infections in beige mice. J Antimicrob Chemother. 1991 Sep;28(3):425–435. doi: 10.1093/jac/28.3.425. [DOI] [PubMed] [Google Scholar]
- Gangadharam P. R., Pratt P. F. In vitro response of murine alveolar and peritoneal macrophages to Mycobacterium intracellulare. Am Rev Respir Dis. 1983 Dec;128(6):1044–1047. doi: 10.1164/arrd.1983.128.6.1044. [DOI] [PubMed] [Google Scholar]
- Gomez-Flores R., Gupta S., Tamez-Guerra R., Mehta R. T. Determination of MICs for Mycobacterium avium-M. intracellulare complex in liquid medium by a colorimetric method. J Clin Microbiol. 1995 Jul;33(7):1842–1846. doi: 10.1128/jcm.33.7.1842-1846.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gregoriadis G., Florence A. T. Liposomes in drug delivery. Clinical, diagnostic and ophthalmic potential. Drugs. 1993 Jan;45(1):15–28. doi: 10.2165/00003495-199345010-00003. [DOI] [PubMed] [Google Scholar]
- Heifets L. MIC as a quantitative measurement of the susceptibility of Mycobacterium avium strains to seven antituberculosis drugs. Antimicrob Agents Chemother. 1988 Aug;32(8):1131–1136. doi: 10.1128/aac.32.8.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horsburgh C. R., Jr Mycobacterium avium complex infection in the acquired immunodeficiency syndrome. N Engl J Med. 1991 May 9;324(19):1332–1338. doi: 10.1056/NEJM199105093241906. [DOI] [PubMed] [Google Scholar]
- Iseman M. D., Corpe R. F., O'Brien R. J., Rosenzwieg D. Y., Wolinsky E. Disease due to Mycobacterium avium-intracellulare. Chest. 1985 Feb;87(2 Suppl):139S–149S. doi: 10.1378/chest.87.2.139s. [DOI] [PubMed] [Google Scholar]
- Karlowsky J. A., Zhanel G. G. Concepts on the use of liposomal antimicrobial agents: applications for aminoglycosides. Clin Infect Dis. 1992 Oct;15(4):654–667. doi: 10.1093/clind/15.4.654. [DOI] [PubMed] [Google Scholar]
- Kesavalu L., Goldstein J. A., Debs R. J., Düzgünes N., Gangadharam P. R. Differential effects of free and liposome encapsulated amikacin on the survival of Mycobacterium avium complex in mouse peritoneal macrophages. Tubercle. 1990 Sep;71(3):215–217. doi: 10.1016/0041-3879(90)90079-n. [DOI] [PubMed] [Google Scholar]
- Kondo E., Katayama T., Kawamura Y., Yasuda Y., Matsumoto K., Ishii K., Tanimoto T., Hinoo H., Kato T., Kyotani H. Isolation and characterization of new antibiotics resorcinomycins A and B. J Antibiot (Tokyo) 1989 Jan;42(1):1–6. doi: 10.7164/antibiotics.42.1. [DOI] [PubMed] [Google Scholar]
- Masaki S., Konishi T., Tsuji N., Shoji J. New antibiotics, resorcinomycins A and B: antibacterial activity of resorcinomycin A against mycobacteria in vitro. J Antibiot (Tokyo) 1989 Mar;42(3):463–466. doi: 10.7164/antibiotics.42.463. [DOI] [PubMed] [Google Scholar]
- Mauël J. Mécanismes de la microbicidie intracellulaire. Bull Eur Physiopathol Respir. 1983 Mar-Apr;19(2):115–122. [PubMed] [Google Scholar]
- Mehta R. T., Keyhani A., McQueen T. J., Rosenbaum B., Rolston K. V., Tarrand J. J. In vitro activities of free and liposomal drugs against Mycobacterium avium-M. intracellulare complex and M. tuberculosis. Antimicrob Agents Chemother. 1993 Dec;37(12):2584–2587. doi: 10.1128/aac.37.12.2584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mehta R. T. Liposome encapsulation of clofazimine reduces toxicity in vitro and in vivo and improves therapeutic efficacy in the beige mouse model of disseminated Mycobacterium avium-M. intracellulare complex infection. Antimicrob Agents Chemother. 1996 Aug;40(8):1893–1902. doi: 10.1128/aac.40.8.1893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mehta R. T., McQueen T. J., Keyhani A., López-Berestein G. Phagocyte transport as mechanism for enhanced therapeutic activity of liposomal amphotericin B. Chemotherapy. 1994 Jul-Aug;40(4):256–264. doi: 10.1159/000239202. [DOI] [PubMed] [Google Scholar]
- Mehta R. T., Mehta K., Lopez-Berestein G., Juliano R. L. Effect of liposomal amphotericin B on murine macrophages and lymphocytes. Infect Immun. 1985 Feb;47(2):429–433. doi: 10.1128/iai.47.2.429-433.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stevenson M., Baillie A. J., Richards R. M. Enhanced activity of streptomycin and chloramphenicol against intracellular Escherichia coli in the J774 macrophage cell line mediated by liposome delivery. Antimicrob Agents Chemother. 1983 Nov;24(5):742–749. doi: 10.1128/aac.24.5.742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tucker S. D., Sivaramakrishnan M. R., Klostergaard J., Lopez-Berestein G. Independence of the pattern of early cytokine release from autoregulation by nitric oxide. J Leukoc Biol. 1991 Nov;50(5):509–516. doi: 10.1002/jlb.50.5.509. [DOI] [PubMed] [Google Scholar]
- Vistica D. T., Skehan P., Scudiero D., Monks A., Pittman A., Boyd M. R. Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res. 1991 May 15;51(10):2515–2520. [PubMed] [Google Scholar]
- Yui S., Yamazaki M. Augmentation and suppression of release of tumor necrosis factor from macrophages by negatively charged phospholipids. Jpn J Cancer Res. 1991 Sep;82(9):1028–1034. doi: 10.1111/j.1349-7006.1991.tb01939.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
