Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Nov;40(11):2567–2572. doi: 10.1128/aac.40.11.2567

Antitrypanosomal activity of purine nucleosides can be enhanced by their conversion to O-acetylated derivatives.

J R Sufrin 1, D Rattendi 1, A J Spiess 1, S Lane 1, C J Marasco Jr 1, C J Bacchi 1
PMCID: PMC163577  PMID: 8913466

Abstract

Fifteen purine nucleosides and their O-acetylated ester derivatives were examined for in vitro antitrypanosomal activity against the LAB 110 EATRO isolate of Trypanosoma brucei brucei and two clinical isolates of Trypanosoma brucei rhodesiense. Initial comparisons of activity were made for the LAB 110 EATRO isolate. Three nucleoside analogs exhibited no significant activity (50% inhibitory concentrations [IC50s] of > 100 microM), whether they were O acetylated or unacetylated; three nucleosides showed almost equal activity (IC50s of < 5 microM) for the parent compound and the O-acetylated derivative; nine nucleosides showed significantly improved activity (> or = 3-fold) upon O acetylation; of these nine analogs, six displayed activity at least 10-fold greater than that of their parent nucleosides. The most significant results were those for four apparently inactive compounds which, upon O acetylation, displayed IC50s of < or = 25 microM. When the series of compounds was tested against T. brucei rhodesiense isolates (KETRI 243 and KETRI 269), their antitrypanosomal effects were comparable to those observed for the EATRO 110 strain. Thus, our studies of purine nucleosides have determined that O acetylation consistently improved their in vitro antitrypanosomal activity. This observed phenomenon was independent of their cellular enzyme targets (i.e., S-adenosylmethionine, polyamine, or purine salvage pathways). On the basis of our results, the routine preparation of O-acetylated purine nucleosides for in vitro screening of antitrypanosomal activity is recommended, since O acetylation transformed several inactive nucleosides into compounds with significant activity, presumably by improving uptake characteristics. O-acetylated purine nucleosides may offer in vivo therapeutic advantages compared with their parent nucleosides, and this possibility should be considered in future evaluations of this structural class of trypanocides.

Full Text

The Full Text of this article is available as a PDF (218.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bacchi C. J., Garofalo J., Ciminelli M., Rattendi D., Goldberg B., McCann P. P., Yarlett N. Resistance to DL-alpha-difluoromethylornithine by clinical isolates of Trypanosoma brucei rhodesiense. Role of S-adenosylmethionine. Biochem Pharmacol. 1993 Aug 3;46(3):471–481. doi: 10.1016/0006-2952(93)90524-z. [DOI] [PubMed] [Google Scholar]
  2. Bacchi C. J., Sufrin J. R., Nathan H. C., Spiess A. J., Hannan T., Garofalo J., Alecia K., Katz L., Yarlett N. 5'-Alkyl-substituted analogs of 5'-methylthioadenosine as trypanocides. Antimicrob Agents Chemother. 1991 Jul;35(7):1315–1320. doi: 10.1128/aac.35.7.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berger B. J., Carter N. S., Fairlamb A. H. Characterisation of pentamidine-resistant Trypanosoma brucei brucei. Mol Biochem Parasitol. 1995 Feb;69(2):289–298. doi: 10.1016/0166-6851(94)00215-9. [DOI] [PubMed] [Google Scholar]
  4. Bitonti A. J., Byers T. L., Bush T. L., Casara P. J., Bacchi C. J., Clarkson A. B., Jr, McCann P. P., Sjoerdsma A. Cure of Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense infections in mice with an irreversible inhibitor of S-adenosylmethionine decarboxylase. Antimicrob Agents Chemother. 1990 Aug;34(8):1485–1490. doi: 10.1128/aac.34.8.1485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Byers T. L., Casara P., Bitonti A. J. Uptake of the antitrypanosomal drug 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'-deoxyadenosine (MDL 73811) by the purine transport system of Trypanosoma brucei brucei. Biochem J. 1992 May 1;283(Pt 3):755–758. doi: 10.1042/bj2830755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carter N. S., Berger B. J., Fairlamb A. H. Uptake of diamidine drugs by the P2 nucleoside transporter in melarsen-sensitive and -resistant Trypanosoma brucei brucei. J Biol Chem. 1995 Nov 24;270(47):28153–28157. doi: 10.1074/jbc.270.47.28153. [DOI] [PubMed] [Google Scholar]
  7. Carter N. S., Fairlamb A. H. Arsenical-resistant trypanosomes lack an unusual adenosine transporter. Nature. 1993 Jan 14;361(6408):173–176. doi: 10.1038/361173a0. [DOI] [PubMed] [Google Scholar]
  8. Ferro A. J., Vandenbark A. A., MacDonald M. R. Inactivation of S-adenosylhomocysteine hydrolase by 5'-deoxy-5'-methylthioadenosine. Biochem Biophys Res Commun. 1981 May 29;100(2):523–531. doi: 10.1016/s0006-291x(81)80208-2. [DOI] [PubMed] [Google Scholar]
  9. Hibasami H., Borchardt R. T., Chen S. Y., Coward J. K., Pegg A. E. Studies of inhibition of rat spermidine synthase and spermine synthase. Biochem J. 1980 May 1;187(2):419–428. doi: 10.1042/bj1870419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hirumi H., Hirumi K. Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J Parasitol. 1989 Dec;75(6):985–989. [PubMed] [Google Scholar]
  11. Kuzoe F. A. Current situation of African trypanosomiasis. Acta Trop. 1993 Sep;54(3-4):153–162. doi: 10.1016/0001-706x(93)90089-t. [DOI] [PubMed] [Google Scholar]
  12. Marton L. J., Pegg A. E. Polyamines as targets for therapeutic intervention. Annu Rev Pharmacol Toxicol. 1995;35:55–91. doi: 10.1146/annurev.pa.35.040195.000415. [DOI] [PubMed] [Google Scholar]
  13. Montgomery J. A., Hewson K. Analogs of 6-methyl-9-beta-D-ribofuranosylpurine. J Med Chem. 1968 Jan;11(1):48–52. doi: 10.1021/jm00307a010. [DOI] [PubMed] [Google Scholar]
  14. Pajula R. L., Raina A. Methylthioadenosine, a potent inhibitor of spermine synthase from bovine brain. FEBS Lett. 1979 Mar 15;99(2):343–345. doi: 10.1016/0014-5793(79)80988-6. [DOI] [PubMed] [Google Scholar]
  15. Phelouzat M. A., Basselin M., Lawrence F., Robert-Gero M. Sinefungin shares AdoMet-uptake system to enter Leishmania donovani promastigotes. Biochem J. 1995 Jan 1;305(Pt 1):133–137. doi: 10.1042/bj3050133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sufrin J. R., Spiess A. J., Kramer D. L., Libby P. R., Miller J. T., Bernacki R. J., Lee Y. H., Borchardt R. T., Porter C. W. Targeting 5'-deoxy-5'-(methylthio)adenosine phosphorylase by 5'-haloalkyl analogues of 5'-deoxy-5'-(methylthio)adenosine. J Med Chem. 1991 Aug;34(8):2600–2606. doi: 10.1021/jm00112a039. [DOI] [PubMed] [Google Scholar]
  17. Trager W. Cultivation of parasites in vitro. Am J Trop Med Hyg. 1978 Mar;27(2 Pt 1):216–222. doi: 10.4269/ajtmh.1978.27.216. [DOI] [PubMed] [Google Scholar]
  18. Van Nieuwenhove S. Advances in sleeping sickness therapy. Ann Soc Belg Med Trop. 1992;72 (Suppl 1):39–51. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES