Abstract
The intrapulmonary pharmacokinetics of oral azithromycin were studied in 25 healthy volunteers, each of whom received an initial dose of 500 mg and then 250 mg once daily for four additional doses. Bronchoscopy, bronchoalveolar lavage, and venipuncture were performed 4, 28, 76, 124, 172, 244, 340, and 508 h after the first dose was administered. Azithromycin concentrations in epithelial lining fluid (ELF), alveolar macrophages, peripheral blood monocytes, and serum were measured by high-performance liquid chromatography. Azithromycin was extensively concentrated in cells and ELF. Drug concentrations in AMs (peak mean +/- standard deviation, 464 +/- 65 micrograms/ml) exceeded 80 micrograms/ml up to 508 h (21 days) following the first dose, while concentrations in PBMs (peak, 124 +/- 28 micrograms/ml) exceeded 20 micrograms/ml up to 340 h (14 days). Azithromycin concentrations in ELF peaked at 124 h (3.12 +/- 0.93 micrograms/ml) and were detectable up to 172 h (7 days), when they were 20 times the concurrent serum concentrations. Although the clinical significance of antibiotic concentrations in these compartments is nuclear, the sustained lung tissue penetration and extensive phagocytic accumulation demonstrated in this study support the proven efficacy of azithromycin administered on a 5-day dosage schedule in the treatment of extracellular or intracellular pulmonary infections.
Full Text
The Full Text of this article is available as a PDF (183.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R., Joone G., van Rensburg C. E. An in-vitro evaluation of the cellular uptake and intraphagocytic bioactivity of clarithromycin (A-56268, TE-031), a new macrolide antimicrobial agent. J Antimicrob Chemother. 1988 Dec;22(6):923–933. doi: 10.1093/jac/22.6.923. [DOI] [PubMed] [Google Scholar]
- Baldwin D. R., Honeybourne D., Wise R. Pulmonary disposition of antimicrobial agents: in vivo observations and clinical relevance. Antimicrob Agents Chemother. 1992 Jun;36(6):1176–1180. doi: 10.1128/aac.36.6.1176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baldwin D. R., Honeybourne D., Wise R. Pulmonary disposition of antimicrobial agents: methodological considerations. Antimicrob Agents Chemother. 1992 Jun;36(6):1171–1175. doi: 10.1128/aac.36.6.1171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baldwin D. R., Wise R., Andrews J. M., Ashby J. P., Honeybourne D. Azithromycin concentrations at the sites of pulmonary infection. Eur Respir J. 1990 Sep;3(8):886–890. [PubMed] [Google Scholar]
- Bonnet M., Van der Auwera P. In vitro and in vivo intraleukocytic accumulation of azithromycin (CP-62, 993) and its influence on ex vivo leukocyte chemiluminescence. Antimicrob Agents Chemother. 1992 Jun;36(6):1302–1309. doi: 10.1128/aac.36.6.1302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conte J. E., Jr, Golden J. A., Duncan S., McKenna E., Zurlinden E. Intrapulmonary pharmacokinetics of clarithromycin and of erythromycin. Antimicrob Agents Chemother. 1995 Feb;39(2):334–338. doi: 10.1128/aac.39.2.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crapo J. D., Barry B. E., Gehr P., Bachofen M., Weibel E. R. Cell number and cell characteristics of the normal human lung. Am Rev Respir Dis. 1982 Aug;126(2):332–337. doi: 10.1164/arrd.1982.126.2.332. [DOI] [PubMed] [Google Scholar]
- Felmingham D., Robbins M. J., Sanghrajka M., Leakey A., Ridgway G. L. The in vitro activity of some 14-, 15- and 16- membered macrolides against Staphylococcus spp., Legionella spp., Mycoplasma spp. and Ureaplasma urealyticum. Drugs Exp Clin Res. 1991;17(2):91–99. [PubMed] [Google Scholar]
- Foulds G., Johnson R. B. Selection of dose regimens of azithromycin . J Antimicrob Chemother. 1993 Jun;31 (Suppl E):39–50. doi: 10.1093/jac/31.suppl_e.39. [DOI] [PubMed] [Google Scholar]
- Foulds G., Shepard R. M., Johnson R. B. The pharmacokinetics of azithromycin in human serum and tissues. J Antimicrob Chemother. 1990 Jan;25 (Suppl A):73–82. doi: 10.1093/jac/25.suppl_a.73. [DOI] [PubMed] [Google Scholar]
- Gladue R. P., Bright G. M., Isaacson R. E., Newborg M. F. In vitro and in vivo uptake of azithromycin (CP-62,993) by phagocytic cells: possible mechanism of delivery and release at sites of infection. Antimicrob Agents Chemother. 1989 Mar;33(3):277–282. doi: 10.1128/aac.33.3.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardy D. J., Hensey D. M., Beyer J. M., Vojtko C., McDonald E. J., Fernandes P. B. Comparative in vitro activities of new 14-, 15-, and 16-membered macrolides. Antimicrob Agents Chemother. 1988 Nov;32(11):1710–1719. doi: 10.1128/aac.32.11.1710. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson J. D., Hand W. L., Francis J. B., King-Thompson N., Corwin R. W. Antibiotic uptake by alveolar macrophages. J Lab Clin Med. 1980 Mar;95(3):429–439. [PubMed] [Google Scholar]
- Lode H. The pharmacokinetics of azithromycin and their clinical significance. Eur J Clin Microbiol Infect Dis. 1991 Oct;10(10):807–812. doi: 10.1007/BF01975832. [DOI] [PubMed] [Google Scholar]
- McDonald P. J., Pruul H. Phagocyte uptake and transport of azithromycin. Eur J Clin Microbiol Infect Dis. 1991 Oct;10(10):828–833. doi: 10.1007/BF01975835. [DOI] [PubMed] [Google Scholar]
- Meyer A. P., Bril-Bazuin C., Mattie H., van den Broek P. J. Uptake of azithromycin by human monocytes and enhanced intracellular antibacterial activity against Staphylococcus aureus. Antimicrob Agents Chemother. 1993 Nov;37(11):2318–2322. doi: 10.1128/aac.37.11.2318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rennard S. I., Basset G., Lecossier D., O'Donnell K. M., Pinkston P., Martin P. G., Crystal R. G. Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. J Appl Physiol (1985) 1986 Feb;60(2):532–538. doi: 10.1152/jappl.1986.60.2.532. [DOI] [PubMed] [Google Scholar]
- Retsema J. A., Girard A. E., Girard D., Milisen W. B. Relationship of high tissue concentrations of azithromycin to bactericidal activity and efficacy in vivo. J Antimicrob Chemother. 1990 Jan;25 (Suppl A):83–89. doi: 10.1093/jac/25.suppl_a.83. [DOI] [PubMed] [Google Scholar]
- Retsema J., Girard A., Schelkly W., Manousos M., Anderson M., Bright G., Borovoy R., Brennan L., Mason R. Spectrum and mode of action of azithromycin (CP-62,993), a new 15-membered-ring macrolide with improved potency against gram-negative organisms. Antimicrob Agents Chemother. 1987 Dec;31(12):1939–1947. doi: 10.1128/aac.31.12.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schentag J. J., Ballow C. H. Tissue-directed pharmacokinetics. Am J Med. 1991 Sep 12;91(3A):5S–11S. doi: 10.1016/0002-9343(91)90394-d. [DOI] [PubMed] [Google Scholar]
- Shepard R. M., Duthu G. S., Ferraina R. A., Mullins M. A. High-performance liquid chromatographic assay with electrochemical detection for azithromycin in serum and tissues. J Chromatogr. 1991 Apr 19;565(1-2):321–337. doi: 10.1016/0378-4347(91)80393-q. [DOI] [PubMed] [Google Scholar]
- Vallée E., Azoulay-Dupuis E., Pocidalo J. J., Bergogne-Bérézin E. Activity and local delivery of azithromycin in a mouse model of Haemophilus influenzae lung infection. Antimicrob Agents Chemother. 1992 Jul;36(7):1412–1417. doi: 10.1128/aac.36.7.1412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wildfeuer A., Laufen H., Zimmermann T. Distribution of orally administered azithromycin in various blood compartments. Int J Clin Pharmacol Ther. 1994 Jul;32(7):356–360. [PubMed] [Google Scholar]
- Wildfeuer A., Reisert I., Laufen H. Uptake and subcellular distribution of azithromycin in human phagocytic cells. Demonstration of the antibiotic in neutrophil polymorphonuclear leucocytes and monocytes by autoradiography and electron microscopy. Arzneimittelforschung. 1993 Apr;43(4):484–486. [PubMed] [Google Scholar]