Abstract
We determined the MICs of 63 quinolones against 14 selected reference and clinical strains of the Mycobacterium avium-Mycobacterium intracellulare complex. Sixty-one of the compounds were selected from the quinolone library at Parke-Davis, Ann Arbor, Mich., including N-1-tert-butyl-substituted agents. T 3761 and tosufloxacin were also tested. The activities of all 63 compounds were compared with those of ciprofloxacin and sparfloxacin. The results showed 45 of the quinolones to be active against the M. avium-M. intracellulare complex, with MICs at which 50% of the strains were inhibited (MIC50s) of less than 32 micrograms/ml. Twenty-four of these quinolones had activities equivalent to or greater than that of ciprofloxacin, and nine of them had activities equivalent to or greater than that of sparfloxacin. The most active compounds were the N-1-tert-butyl-substituted quinolones, PD 161315 and PD 161314, with MIC50s of 0.25 microgram/ml and MIC90s of 1 microgram/ml; comparable values for ciprofloxacin were 2 and 4 micrograms/ml, respectively, while for sparfloxacin they were 1 and 2 micrograms/ml, respectively. The next most active compounds, with MIC50s of 0.5 microgram/ml and MIC90s of 1 microgram/ml, were the N-1-cyclopropyl-substituted quinolones, PD 138926 and PD 158804. These values show that the tert-butyl substituent is at least as good as cyclopropyl in rendering high levels of antimycobacterial activity. However, none of the quinolones showed activity against ciprofloxacin-resistant laboratory-derived M. avium-M. intracellulare complex strains. A MULTICASE program-based structure-activity relationship analysis of the inhibitory activities of these 63 quinolones and 109 quinolones previously studied against the most resistant clinical strain of M. avium was also performed and led to the identification of two major biophores and two biophobes.
Full Text
The Full Text of this article is available as a PDF (240.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Domagala J. M., Bridges A. J., Culbertson T. P., Gambino L., Hagen S. E., Karrick G., Porter K., Sanchez J. P., Sesnie J. A., Spense F. G. Synthesis and biological activity of 5-amino- and 5-hydroxyquinolones, and the overwhelming influence of the remote N1-substituent in determining the structure-activity relationship. J Med Chem. 1991 Mar;34(3):1142–1154. doi: 10.1021/jm00107a039. [DOI] [PubMed] [Google Scholar]
- Domagala J. M., Hagen S. E., Joannides T., Kiely J. S., Laborde E., Schroeder M. C., Sesnie J. A., Shapiro M. A., Suto M. J., Vanderroest S. Quinolone antibacterials containing the new 7-[3-(1-aminoethyl)-1- pyrrolidinyl] side chain: the effects of the 1-aminoethyl moiety and its stereochemical configurations on potency and in vivo efficacy. J Med Chem. 1993 Apr 2;36(7):871–882. doi: 10.1021/jm00059a012. [DOI] [PubMed] [Google Scholar]
- Domagala J. M., Hanna L. D., Heifetz C. L., Hutt M. P., Mich T. F., Sanchez J. P., Solomon M. New structure-activity relationships of the quinolone antibacterials using the target enzyme. The development and application of a DNA gyrase assay. J Med Chem. 1986 Mar;29(3):394–404. doi: 10.1021/jm00153a015. [DOI] [PubMed] [Google Scholar]
- Domagala J. M., Heifetz C. L., Hutt M. P., Mich T. F., Nichols J. B., Solomon M., Worth D. F. 1-Substituted 7-[3-[(ethylamino)methyl]-1-pyrrolidinyl]-6,8- difluoro-1,4-dihydro-4-oxo-3-quinolinecarboxylic acids. New quantitative structure-activity relationships at N1 for the quinolone antibacterials. J Med Chem. 1988 May;31(5):991–1001. doi: 10.1021/jm00400a017. [DOI] [PubMed] [Google Scholar]
- Domagala J. M. Structure-activity and structure-side-effect relationships for the quinolone antibacterials. J Antimicrob Chemother. 1994 Apr;33(4):685–706. doi: 10.1093/jac/33.4.685. [DOI] [PubMed] [Google Scholar]
- Hagen S. E., Domagala J. M., Heifetz C. L., Johnson J. Synthesis and biological activity of 5-alkyl-1,7,8-trisubstituted-6-fluoroquinoline-3-carboxylic acids. J Med Chem. 1991 Mar;34(3):1155–1161. doi: 10.1021/jm00107a040. [DOI] [PubMed] [Google Scholar]
- Hagen S. E., Domagala J. M., Heifetz C. L., Sanchez J. P., Solomon M. New quinolone antibacterial agents. Synthesis and biological activity of 7-(3,3- or 3,4-disubstituted-1-pyrrolidinyl)quinoline-3-carboxylic acids. J Med Chem. 1990 Feb;33(2):849–854. doi: 10.1021/jm00164a060. [DOI] [PubMed] [Google Scholar]
- Klopman G., Fercu D., Li J. Y., Rosenkranz H. S., Jacobs M. R. Antimycobacterial quinolones: a comparative analysis of structure-activity and structure-cytotoxicity relationships. Res Microbiol. 1996 Jan-Feb;147(1-2):86–96. doi: 10.1016/0923-2508(96)80209-9. [DOI] [PubMed] [Google Scholar]
- Klopman G., Li J. Y., Wang S., Pearson A. J., Chang K., Jacobs M. R., Bajaksouzian S., Ellner J. J. In vitro anti-Mycobacterium avium activities of quinolones: predicted active structures and mechanistic considerations. Antimicrob Agents Chemother. 1994 Aug;38(8):1794–1802. doi: 10.1128/aac.38.8.1794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klopman G., Macina O. T., Levinson M. E., Rosenkranz H. S. Computer automated structure evaluation of quinolone antibacterial agents. Antimicrob Agents Chemother. 1987 Nov;31(11):1831–1840. doi: 10.1128/aac.31.11.1831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klopman G., Wang S., Jacobs M. R., Bajaksouzian S., Edmonds K., Ellner J. J. Anti-Mycobacterium avium activity of quinolones: in vitro activities. Antimicrob Agents Chemother. 1993 Sep;37(9):1799–1806. doi: 10.1128/aac.37.9.1799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klopman G., Wang S., Jacobs M. R., Ellner J. J. Anti-Mycobacterium avium activity of quinolones: structure-activity relationship studies. Antimicrob Agents Chemother. 1993 Sep;37(9):1807–1815. doi: 10.1128/aac.37.9.1807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leysen D. C., Haemers A., Pattyn S. R. Mycobacteria and the new quinolones. Antimicrob Agents Chemother. 1989 Jan;33(1):1–5. doi: 10.1128/aac.33.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nikaido H., Thanassi D. G. Penetration of lipophilic agents with multiple protonation sites into bacterial cells: tetracyclines and fluoroquinolones as examples. Antimicrob Agents Chemother. 1993 Jul;37(7):1393–1399. doi: 10.1128/aac.37.7.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Renau T. E., Sanchez J. P., Gage J. W., Dever J. A., Shapiro M. A., Gracheck S. J., Domagala J. M. Structure-activity relationships of the quinolone antibacterials against mycobacteria: effect of structural changes at N-1 and C-7. J Med Chem. 1996 Feb 2;39(3):729–735. doi: 10.1021/jm9507082. [DOI] [PubMed] [Google Scholar]
- Renau T. E., Sanchez J. P., Shapiro M. A., Dever J. A., Gracheck S. J., Domagala J. M. Effect of lipophilicity at N-1 on activity of fluoroquinolones against mycobacteria. J Med Chem. 1995 Jul 21;38(15):2974–2977. doi: 10.1021/jm00015a021. [DOI] [PubMed] [Google Scholar]
- Shen L. L. Molecular mechanisms of DNA gyrase inhibition by quinolone antibacterials. Adv Pharmacol. 1994;29A:285–304. doi: 10.1016/s1054-3589(08)60550-5. [DOI] [PubMed] [Google Scholar]
- Tullman R. H., Hanzlik R. P. Inactivation of cytochrome P-450 and monoamine oxidase by cyclopropylamines. Drug Metab Rev. 1984;15(5-6):1163–1182. doi: 10.3109/03602538409033560. [DOI] [PubMed] [Google Scholar]
- Yajko D. M., Nassos P. S., Hadley W. K. Broth microdilution testing of susceptibilities to 30 antimicrobial agents of Mycobacterium avium strains from patients with acquired immune deficiency syndrome. Antimicrob Agents Chemother. 1987 Oct;31(10):1579–1584. doi: 10.1128/aac.31.10.1579. [DOI] [PMC free article] [PubMed] [Google Scholar]