Abstract
The in vitro susceptibilities of Chlamydia pneumoniae isolates to macrolide, tetracycline, and quinolone antibiotics were determined. Tetracycline, clarithromycin, and erythromycin had the lowest MICs in the first cell culture passage. Azithromycin required the lowest concentration for complete inhibition of inclusion formation on the second pass into antibiotic-free medium, likely reflecting its high intracellular concentrations.
Full Text
The Full Text of this article is available as a PDF (160.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Campbell J. F., Barnes R. C., Kozarsky P. E., Spika J. S. Culture-confirmed pneumonia due to Chlamydia pneumoniae. J Infect Dis. 1991 Aug;164(2):411–413. doi: 10.1093/infdis/164.2.411. [DOI] [PubMed] [Google Scholar]
- Chirgwin K., Roblin P. M., Gelling M., Hammerschlag M. R., Schachter J. Infection with Chlamydia pneumoniae in Brooklyn. J Infect Dis. 1991 Apr;163(4):757–761. doi: 10.1093/infdis/163.4.757. [DOI] [PubMed] [Google Scholar]
- Cooper M. A., Baldwin D., Matthews R. S., Andrews J. M., Wise R. In-vitro susceptibility of Chlamydia pneumoniae (TWAR) to seven antibiotics. J Antimicrob Chemother. 1991 Sep;28(3):407–413. doi: 10.1093/jac/28.3.407. [DOI] [PubMed] [Google Scholar]
- Ekman M. R., Grayston J. T., Visakorpi R., Kleemola M., Kuo C. C., Saikku P. An epidemic of infections due to Chlamydia pneumoniae in military conscripts. Clin Infect Dis. 1993 Sep;17(3):420–425. doi: 10.1093/clinids/17.3.420. [DOI] [PubMed] [Google Scholar]
- Fernandes P. B., Bailer R., Swanson R., Hanson C. W., McDonald E., Ramer N., Hardy D., Shipkowitz N., Bower R. R., Gade E. In vitro and in vivo evaluation of A-56268 (TE-031), a new macrolide. Antimicrob Agents Chemother. 1986 Dec;30(6):865–873. doi: 10.1128/aac.30.6.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein F. W., Emirian M. F., Coutrot A., Acar J. F. Bacteriostatic and bactericidal activity of azithromycin against Haemophilus influenzae. J Antimicrob Chemother. 1990 Jan;25 (Suppl A):25–28. doi: 10.1093/jac/25.suppl_a.25. [DOI] [PubMed] [Google Scholar]
- Grayston J. T., Kuo C. C., Wang S. P., Altman J. A new Chlamydia psittaci strain, TWAR, isolated in acute respiratory tract infections. N Engl J Med. 1986 Jul 17;315(3):161–168. doi: 10.1056/NEJM198607173150305. [DOI] [PubMed] [Google Scholar]
- Hammerschlag M. R., Hyman C. L., Roblin P. M. In vitro activities of five quinolones against Chlamydia pneumoniae. Antimicrob Agents Chemother. 1992 Mar;36(3):682–683. doi: 10.1128/aac.36.3.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammerschlag M. R., Qumei K. K., Roblin P. M. In vitro activities of azithromycin, clarithromycin, L-ofloxacin, and other antibiotics against Chlamydia pneumoniae. Antimicrob Agents Chemother. 1992 Jul;36(7):1573–1574. doi: 10.1128/aac.36.7.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura M., Kishimoto T., Niki Y., Soejima R. In vitro and in vivo antichlamydial activities of newly developed quinolone antimicrobial agents. Antimicrob Agents Chemother. 1993 Apr;37(4):801–803. doi: 10.1128/aac.37.4.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuo C. C., Grayston J. T. In vitro drug susceptibility of Chlamydia sp. strain TWAR. Antimicrob Agents Chemother. 1988 Feb;32(2):257–258. doi: 10.1128/aac.32.2.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuo C. C., Jackson L. A., Campbell L. A., Grayston J. T. Chlamydia pneumoniae (TWAR). Clin Microbiol Rev. 1995 Oct;8(4):451–461. doi: 10.1128/cmr.8.4.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipsky B. A., Tack K. J., Kuo C. C., Wang S. P., Grayston J. T. Ofloxacin treatment of Chlamydia pneumoniae (strain TWAR) lower respiratory tract infections. Am J Med. 1990 Dec;89(6):722–724. doi: 10.1016/0002-9343(90)90212-v. [DOI] [PubMed] [Google Scholar]
- Nakata K., Okazaki Y., Hattori H., Nakamura S. Protective effects of sparfloxacin in experimental pneumonia caused by Chlamydia pneumoniae in leukopenic mice. Antimicrob Agents Chemother. 1994 Aug;38(8):1757–1762. doi: 10.1128/aac.38.8.1757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niki Y., Kimura M., Miyashita N., Soejima R. In vitro and in vivo activities of azithromycin, a new azalide antibiotic, against chlamydia. Antimicrob Agents Chemother. 1994 Oct;38(10):2296–2299. doi: 10.1128/aac.38.10.2296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Retsema J., Girard A., Schelkly W., Manousos M., Anderson M., Bright G., Borovoy R., Brennan L., Mason R. Spectrum and mode of action of azithromycin (CP-62,993), a new 15-membered-ring macrolide with improved potency against gram-negative organisms. Antimicrob Agents Chemother. 1987 Dec;31(12):1939–1947. doi: 10.1128/aac.31.12.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamazaki T., Nakada H., Sakurai N., Kuo C. C., Wang S. P., Grayston J. T. Transmission of Chlamydia pneumoniae in young children in a Japanese family. J Infect Dis. 1990 Dec;162(6):1390–1392. doi: 10.1093/infdis/162.6.1390. [DOI] [PubMed] [Google Scholar]