Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Dec;40(12):2691–2697. doi: 10.1128/aac.40.12.2691

Activity of the new fluoroquinolone trovafloxacin (CP-99,219) against DNA gyrase and topoisomerase IV mutants of Streptococcus pneumoniae selected in vitro.

T D Gootz 1, R Zaniewski 1, S Haskell 1, B Schmieder 1, J Tankovic 1, D Girard 1, P Courvalin 1, R J Polzer 1
PMCID: PMC163605  PMID: 9124824

Abstract

The MICs of trovafloxacin, ciprofloxacin, ofloxacin, and sparfloxacin at which 90% of isolates are inhibited for 55 isolates of pneumococci were 0.125, 1, 4, and 0.5 microgram/ml, respectively. Resistant mutants of two susceptible isolates were selected in a stepwise fashion on agar containing ciprofloxacin at 2 to 10 times the MIC. While no mutants were obtained at the highest concentration tested, mutants were obtained at four times the MIC of ciprofloxacin (4 micrograms/ml) at a frequency of 1.0 x 10(-9). Ciprofloxacin MICs for these first-step mutants ranged from 4 to 8 micrograms/ml, whereas trovafloxacin MICs were 0.25 to 0.5 microgram/ml. Amplification of the quinolone resistance-determining region of the grlA (parC; topoisomerase IV) and gyrA (DNA gyrase) genes of the parents and mutants revealed that changes of the serine at position 80 (Ser80) to Phe or Tyr (Staphylococcus aureus coordinates) in GrlA were associated with resistance to ciprofloxacin. Second-step mutants of these isolates were selected by plating the isolates on medium containing ciprofloxacin at 32 micrograms/ml. Mutants for which ciprofloxacin MICs were 32 to 256 micrograms/ml and trovafloxacin MICs were 4 to 16 micrograms/ml were obtained at a frequency of 1.0 x 10(-9). Second-step mutants also had a change in GyrA corresponding to a substitution in Ser84 to Tyr or Phe or in Glu88 to Lys. Trovafloxacin protected from infection mice whose lungs were inoculated with lethal doses of either the parent strain or the first-step mutant. These results indicate that resistance to fluoroquinolones in S. pneumoniae occurs in vitro at a low frequency, involving sequential mutations in topoisomerase IV and DNA gyrase. Trovafloxacin MICs for wild-type and first-step mutants are within clinically achievable levels in the blood and lungs of humans.

Full Text

The Full Text of this article is available as a PDF (211.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appelbaum P. C. Antimicrobial resistance in Streptococcus pneumoniae: an overview. Clin Infect Dis. 1992 Jul;15(1):77–83. doi: 10.1093/clinids/15.1.77. [DOI] [PubMed] [Google Scholar]
  2. Baquero F. Pneumococcal resistance to beta-lactam antibiotics: a global geographic overview. Microb Drug Resist. 1995 Summer;1(2):115–120. doi: 10.1089/mdr.1995.1.115. [DOI] [PubMed] [Google Scholar]
  3. Cantón E., Pemán J., Jimenez M. T., Ramón M. S., Gobernado M. In vitro activity of sparfloxacin compared with those of five other quinolones. Antimicrob Agents Chemother. 1992 Mar;36(3):558–565. doi: 10.1128/aac.36.3.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Child J., Andrews J., Boswell F., Brenwald N., Wise R. The in-vitro activity of CP 99,219, a new naphthyridone antimicrobial agent: a comparison with fluoroquinolone agents. J Antimicrob Chemother. 1995 Jun;35(6):869–876. doi: 10.1093/jac/35.6.869. [DOI] [PubMed] [Google Scholar]
  5. Ferrero L., Cameron B., Crouzet J. Analysis of gyrA and grlA mutations in stepwise-selected ciprofloxacin-resistant mutants of Staphylococcus aureus. Antimicrob Agents Chemother. 1995 Jul;39(7):1554–1558. doi: 10.1128/aac.39.7.1554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ferrero L., Cameron B., Manse B., Lagneaux D., Crouzet J., Famechon A., Blanche F. Cloning and primary structure of Staphylococcus aureus DNA topoisomerase IV: a primary target of fluoroquinolones. Mol Microbiol. 1994 Aug;13(4):641–653. doi: 10.1111/j.1365-2958.1994.tb00458.x. [DOI] [PubMed] [Google Scholar]
  7. Girard A. E., Girard D., Gootz T. D., Faiella J. A., Cimochowski C. R. In vivo efficacy of trovafloxacin (CP-99,219), a new quinolone with extended activities against gram-positive pathogens, Streptococcus pneumoniae, and Bacteroides fragilis. Antimicrob Agents Chemother. 1995 Oct;39(10):2210–2216. doi: 10.1128/aac.39.10.2210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hooper D. C. Quinolone mode of action. Drugs. 1995;49 (Suppl 2):10–15. doi: 10.2165/00003495-199500492-00004. [DOI] [PubMed] [Google Scholar]
  9. Hori S., Ohshita Y., Utsui Y., Hiramatsu K. Sequential acquisition of norfloxacin and ofloxacin resistance by methicillin-resistant and -susceptible Staphylococcus aureus. Antimicrob Agents Chemother. 1993 Nov;37(11):2278–2284. doi: 10.1128/aac.37.11.2278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hoshino K., Kitamura A., Morrissey I., Sato K., Kato J., Ikeda H. Comparison of inhibition of Escherichia coli topoisomerase IV by quinolones with DNA gyrase inhibition. Antimicrob Agents Chemother. 1994 Nov;38(11):2623–2627. doi: 10.1128/aac.38.11.2623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kaatz G. W., Seo S. M., Ruble C. A. Mechanisms of fluoroquinolone resistance in Staphylococcus aureus. J Infect Dis. 1991 May;163(5):1080–1086. doi: 10.1093/infdis/163.5.1080. [DOI] [PubMed] [Google Scholar]
  12. Khodursky A. B., Zechiedrich E. L., Cozzarelli N. R. Topoisomerase IV is a target of quinolones in Escherichia coli. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11801–11805. doi: 10.1073/pnas.92.25.11801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Margerrison E. E., Hopewell R., Fisher L. M. Nucleotide sequence of the Staphylococcus aureus gyrB-gyrA locus encoding the DNA gyrase A and B proteins. J Bacteriol. 1992 Mar;174(5):1596–1603. doi: 10.1128/jb.174.5.1596-1603.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nau R., Schmidt T., Kaye K., Froula J. L., Täuber M. G. Quinolone antibiotics in therapy of experimental pneumococcal meningitis in rabbits. Antimicrob Agents Chemother. 1995 Mar;39(3):593–597. doi: 10.1128/AAC.39.3.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Peng H., Marians K. J. Escherichia coli topoisomerase IV. Purification, characterization, subunit structure, and subunit interactions. J Biol Chem. 1993 Nov 15;268(32):24481–24490. [PubMed] [Google Scholar]
  16. Spangler S. K., Jacobs M. R., Appelbaum P. C. Activity of CP 99,219 compared with those of ciprofloxacin, grepafloxacin, metronidazole, cefoxitin, piperacillin, and piperacillin-tazobactam against 489 anaerobes. Antimicrob Agents Chemother. 1994 Oct;38(10):2471–2476. doi: 10.1128/aac.38.10.2471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tankovic J., Perichon B., Duval J., Courvalin P. Contribution of mutations in gyrA and parC genes to fluoroquinolone resistance of mutants of Streptococcus pneumoniae obtained in vivo and in vitro. Antimicrob Agents Chemother. 1996 Nov;40(11):2505–2510. doi: 10.1128/aac.40.11.2505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Teng R., Harris S. C., Nix D. E., Schentag J. J., Foulds G., Liston T. E. Pharmacokinetics and safety of trovafloxacin (CP-99,219), a new quinolone antibiotic, following administration of single oral doses to healthy male volunteers. J Antimicrob Chemother. 1995 Aug;36(2):385–394. doi: 10.1093/jac/36.2.385. [DOI] [PubMed] [Google Scholar]
  19. Teng R., Tensfeldt T. G., Liston T. E., Foulds G. Determination of trovafloxacin, a new quinolone antibiotic, in biological samples by reversed-phase high-performance liquid chromatography. J Chromatogr B Biomed Appl. 1996 Jan 12;675(1):53–59. doi: 10.1016/0378-4347(95)00340-1. [DOI] [PubMed] [Google Scholar]
  20. Visalli M. A., Jacobs M. R., Appelbaum P. C. Activity of CP 99,219 (trovafloxacin) compared with ciprofloxacin, sparfloxacin, clinafloxacin, lomefloxacin and cefuroxime against ten penicillin-susceptible and penicillin-resistant pneumococci by time-kill methodology. J Antimicrob Chemother. 1996 Jan;37(1):77–84. doi: 10.1093/jac/37.1.77. [DOI] [PubMed] [Google Scholar]
  21. Yoshida H., Bogaki M., Nakamura S., Ubukata K., Konno M. Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. J Bacteriol. 1990 Dec;172(12):6942–6949. doi: 10.1128/jb.172.12.6942-6949.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES