Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Dec;40(12):2703–2709. doi: 10.1128/aac.40.12.2703

Characterization of peripheral-compartment kinetics of antibiotics by in vivo microdialysis in humans.

M Müller 1, O Haag 1, T Burgdorff 1, A Georgopoulos 1, W Weninger 1, B Jansen 1, G Stanek 1, H Pehamberger 1, E Agneter 1, H G Eichler 1
PMCID: PMC163607  PMID: 9124826

Abstract

The calculation of pharmacokinetic/pharmacodynamic surrogates from concentrations in serum has been shown to yield important information for the evaluation of antibiotic regimens. Calculations based on concentrations in serum, however, may not necessarily be appropriate for peripheral-compartment infections. The aim of the present study was to apply the microdialysis technique for the study of the peripheral-compartment pharmacokinetics of select antibiotics in humans. Microdialysis probes were inserted into the skeletal muscle and adipose tissue of healthy volunteers and into inflamed and noninflamed dermis of patients with cellulitis. Thereafter, volunteers received either cefodizime (2,000 mg as an intravenous bolus; n = 6), cefpirome (2,000 mg as an intravenous bolus; n = 6), fleroxacin (400 mg orally n = 6), or dirithromycin (250 mg orally; n = 4); the patients received phenoxymethylpenicillin (4.5 x 10(6) U orally; n = 3). Complete concentration-versus-time profiles for serum and tissues could be obtained for all compounds. Major pharmacokinetic parameters (elimination half-life, peak concentration in serum, time to peak concentration, area under the concentration-time curve [AUC], and AUC/MIC ratio) were calculated for tissues. For cefodizime and cefpirome, the AUCtissue/AUCserum ratios were 0.12 to 0.35 and 1.20 to 1.79, respectively. The AUCtissue/AUCserum ratios were 0.34 to 0.38 for fleroxacin and 0.42 to 0.49 for dirithromycin. There was no visible difference in the time course of phenoxymethylpenicillin in inflamed and noninflamed dermis. We demonstrated, by means of microdialysis, that the concept of pharmacokinetic/pharmacodynamic surrogate markers for evaluation of antibiotic regimens originally developed for serum pharmacokinetics can be extended to peripheral-tissue pharmacokinetics. This novel information may be useful for the rational development of dosage schedules and may improve predictions regarding therapeutic outcome.

Full Text

The Full Text of this article is available as a PDF (246.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai S., Tabata S., Kobayashi S., Inazu M., Hayashi S. Pharmacokinetic study of cefodizime in experimentally infected animals. Arzneimittelforschung. 1989 Aug;39(8):877–882. [PubMed] [Google Scholar]
  2. Bauernfeind A. In-vitro activity of dirithromycin in comparison with other new and established macrolides. J Antimicrob Chemother. 1993 Mar;31 (Suppl 100):39–49. doi: 10.1093/jac/31.suppl_c.39. [DOI] [PubMed] [Google Scholar]
  3. Bergogne-Bérézin E. Tissue distribution of dirithromycin: comparison with erythromycin. J Antimicrob Chemother. 1993 Mar;31 (Suppl 100):77–87. doi: 10.1093/jac/31.suppl_c.77. [DOI] [PubMed] [Google Scholar]
  4. Blöchl-Daum B., Müller M., Meisinger V., Eichler H. G., Fassolt A., Pehamberger H. Measurement of extracellular fluid carboplatin kinetics in melanoma metastases with microdialysis. Br J Cancer. 1996 Apr;73(7):920–924. doi: 10.1038/bjc.1996.164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bremner D. A., Dickie A. S., Singh K. P. In-vitro activity of fleroxacin compared with three other quinolones. J Antimicrob Chemother. 1988 Oct;22 (Suppl 500):19–23. doi: 10.1093/jac/22.supplement_d.19. [DOI] [PubMed] [Google Scholar]
  6. Cakmakci M., Gossweiler L., Schilling J., Schlumpf R., Geroulanos S. Penetration of fleroxacin into human lung, muscle, and fat tissue. Drugs Exp Clin Res. 1992;18(7):299–302. [PubMed] [Google Scholar]
  7. DeGuchi Y., Terasaki T., Yamada H., Tsuji A. An application of microdialysis to drug tissue distribution study: in vivo evidence for free-ligand hypothesis and tissue binding of beta-lactam antibiotics in interstitial fluids. J Pharmacobiodyn. 1992 Feb;15(2):79–89. doi: 10.1248/bpb1978.15.79. [DOI] [PubMed] [Google Scholar]
  8. Fischman A. J., Livni E., Babich J., Alpert N. M., Liu Y. Y., Thom E., Cleeland R., Prosser B. L., Correia J. A., Strauss H. W. Pharmacokinetics of [18F]fleroxacin in healthy human subjects studied by using positron emission tomography. Antimicrob Agents Chemother. 1993 Oct;37(10):2144–2152. doi: 10.1128/aac.37.10.2144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Georgopoulos A. A simple micro agar diffusion method for the determination of antibiotic concentrations in blood and other body fluids. Zentralbl Bakteriol Orig A. 1978;242(3):387–393. [PubMed] [Google Scholar]
  10. Griggs D. J., Wise R., Kirkpatrick B., Ashby J. P. The metabolism and pharmacokinetics of fleroxacin in healthy subjects. J Antimicrob Chemother. 1988 Oct;22 (Suppl 500):191–194. doi: 10.1093/jac/22.supplement_d.191. [DOI] [PubMed] [Google Scholar]
  11. Hyatt J. M., McKinnon P. S., Zimmer G. S., Schentag J. J. The importance of pharmacokinetic/pharmacodynamic surrogate markers to outcome. Focus on antibacterial agents. Clin Pharmacokinet. 1995 Feb;28(2):143–160. doi: 10.2165/00003088-199528020-00005. [DOI] [PubMed] [Google Scholar]
  12. Jones R. N., Pfaller M. A., Allen S. D., Gerlach E. H., Fuchs P. C., Aldridge K. E. Antimicrobial activity of cefpirome. An update compared to five third-generation cephalosporins against nearly 6000 recent clinical isolates from five medical centers. Diagn Microbiol Infect Dis. 1991 Jul-Aug;14(4):361–364. doi: 10.1016/0732-8893(91)90029-f. [DOI] [PubMed] [Google Scholar]
  13. Jynge P., Skjetne T., Gribbestad I., Kleinbloesem C. H., Hoogkamer H. F., Antonsen O., Krane J., Bakøy O. E., Furuheim K. M., Nilsen O. G. In vivo tissue pharmacokinetics by fluorine magnetic resonance spectroscopy: a study of liver and muscle disposition of fleroxacin in humans. Clin Pharmacol Ther. 1990 Nov;48(5):481–489. doi: 10.1038/clpt.1990.183. [DOI] [PubMed] [Google Scholar]
  14. Kavi J., Andrews J. M., Ashby J. P., Hillman G., Wise R. Pharmacokinetics and tissue penetration of cefpirome, a new cephalosporin. J Antimicrob Chemother. 1988 Dec;22(6):911–916. doi: 10.1093/jac/22.6.911. [DOI] [PubMed] [Google Scholar]
  15. Korting H. C., Schäfer-Korting M., Maass L., Klesel N., Mutschler E. Cefodizime in serum and skin blister fluid after single intravenous and intramuscular doses in healthy volunteers. Antimicrob Agents Chemother. 1987 Nov;31(11):1822–1825. doi: 10.1128/aac.31.11.1822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lönnroth P., Jansson P. A., Smith U. A microdialysis method allowing characterization of intercellular water space in humans. Am J Physiol. 1987 Aug;253(2 Pt 1):E228–E231. doi: 10.1152/ajpendo.1987.253.2.E228. [DOI] [PubMed] [Google Scholar]
  17. Mtairag E. M., Abdelghaffar H., Labro M. T. Investigation of dirithromycin and erythromycylamine uptake by human neutrophils in vitro. J Antimicrob Chemother. 1994 Mar;33(3):523–536. doi: 10.1093/jac/33.3.523. [DOI] [PubMed] [Google Scholar]
  18. Müller M., Schmid R., Georgopoulos A., Buxbaum A., Wasicek C., Eichler H. G. Application of microdialysis to clinical pharmacokinetics in humans. Clin Pharmacol Ther. 1995 Apr;57(4):371–380. doi: 10.1016/0009-9236(95)90205-8. [DOI] [PubMed] [Google Scholar]
  19. Müller M., Schmid R., Nieszpaur-Los M., Fassolt A., Lönnroth P., Fasching P., Eichler H. G. Key metabolite kinetics in human skeletal muscle during ischaemia and reperfusion: measurement by microdialysis. Eur J Clin Invest. 1995 Aug;25(8):601–607. doi: 10.1111/j.1365-2362.1995.tb01752.x. [DOI] [PubMed] [Google Scholar]
  20. Müller M., v Osten B., Schmid R., Piegler E., Gerngross I., Buchegger H., Eichler H. G. Theophylline kinetics in peripheral tissues in vivo in humans. Naunyn Schmiedebergs Arch Pharmacol. 1995 Oct;352(4):438–441. doi: 10.1007/BF00172782. [DOI] [PubMed] [Google Scholar]
  21. Nowak A., Klimowicz A. Two-stage penetration of a single oral dose of sulphadimethoxine into skin blister fluid. Eur J Clin Pharmacol. 1990;39(5):487–490. doi: 10.1007/BF00280941. [DOI] [PubMed] [Google Scholar]
  22. Portmann R., Weidekamm E. Penetration of fleroxacin into human and animal tissues. Chemotherapy. 1992;38(3):145–149. doi: 10.1159/000238954. [DOI] [PubMed] [Google Scholar]
  23. Roos K., Brorson J. E. Concentration of phenoxymethylpenicillin in tonsillar tissue. Eur J Clin Pharmacol. 1990;39(4):417–418. doi: 10.1007/BF00315423. [DOI] [PubMed] [Google Scholar]
  24. Ryan D. M., Cars O. A problem in the interpretation of beta-lactam antibiotic levels in tissues. J Antimicrob Chemother. 1983 Sep;12(3):281–284. doi: 10.1093/jac/12.3.281. [DOI] [PubMed] [Google Scholar]
  25. Ryan D. M., Cars O., Hoffstedt B. The use of antibiotic serum levels to predict concentrations in tissues. Scand J Infect Dis. 1986;18(5):381–388. doi: 10.3109/00365548609032352. [DOI] [PubMed] [Google Scholar]
  26. Ryan D. M. Pharmacokinetics of antibiotics in natural and experimental superficial compartments in animals and humans. J Antimicrob Chemother. 1993 May;31 (Suppl 500):1–16. doi: 10.1093/jac/31.suppl_d.1. [DOI] [PubMed] [Google Scholar]
  27. Scheyer R. D., During M. J., Spencer D. D., Cramer J. A., Mattson R. H. Measurement of carbamazepine and carbamazepine epoxide in the human brain using in vivo microdialysis. Neurology. 1994 Aug;44(8):1469–1472. doi: 10.1212/wnl.44.8.1469. [DOI] [PubMed] [Google Scholar]
  28. Sides G. D., Cerimele B. J., Black H. R., Busch U., DeSante K. A. Pharmacokinetics of dirithromycin. J Antimicrob Chemother. 1993 Mar;31 (Suppl 100):65–75. doi: 10.1093/jac/31.suppl_c.65. [DOI] [PubMed] [Google Scholar]
  29. Soussy C. J., Chanal M., Kitzis M. D. The in-vitro activity of cefodizime: a review. J Antimicrob Chemother. 1990 Nov;26 (Suppl 100):13–21. doi: 10.1093/jac/26.suppl_c.13. [DOI] [PubMed] [Google Scholar]
  30. Strömberg A., Friberg U., Cars O. Concentrations of phenoxymethylpenicillin and cefadroxil in tonsillar tissue and tonsillar surface fluid. Eur J Clin Microbiol. 1987 Oct;6(5):525–529. doi: 10.1007/BF02014240. [DOI] [PubMed] [Google Scholar]
  31. Tang-Liu D. D., Schwob D. L., Usansky J. I., Gordon Y. J. Comparative tear concentrations over time of ofloxacin and tobramycin in human eyes. Clin Pharmacol Ther. 1994 Mar;55(3):284–292. doi: 10.1038/clpt.1994.29. [DOI] [PubMed] [Google Scholar]
  32. Ungerstedt U. Microdialysis--principles and applications for studies in animals and man. J Intern Med. 1991 Oct;230(4):365–373. doi: 10.1111/j.1365-2796.1991.tb00459.x. [DOI] [PubMed] [Google Scholar]
  33. Yamamoto T., Kusajima H., Hosaka M., Shinoda H. Uptake and intracellular activity of fleroxacin in phagocytic cells. Chemotherapy. 1995 Sep-Oct;41(5):353–359. doi: 10.1159/000239367. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES