Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Dec;40(12):2710–2713. doi: 10.1128/aac.40.12.2710

In vitro antifungal and fungicidal activities and erythrocyte toxicities of cyclic lipodepsinonapeptides produced by Pseudomonas syringae pv. syringae.

K N Sorensen 1, K H Kim 1, J Y Takemoto 1
PMCID: PMC163608  PMID: 9124827

Abstract

Recent increases in fungal infections, the few available antifungal drugs, and increasing fungal resistance to the available antifungal drugs have resulted in a broadening of the search for new antifungal agents. Strains of Pseudomonas syringae pv. syringae produce cyclic lipodepsinonapeptides with antifungal activity. The in vitro antifungal and fungicidal activities of three cyclic lipodepsinonapeptides (syringomycin E, syringotoxin B, and syringostatin A) against medically important isolates were evaluated by a standard broth microdilution susceptibility method. Erythrocyte toxicities were also evaluated. All three compounds showed broad antifungal activities and fungicidal actions against most of the fungi tested. Overall, the cyclic lipodepsinonapeptides were more effective against yeasts than against the filamentous fungi. Syringomycin E and syringostatin A had very similar antifungal activities (2.5 to > 40 micrograms/ml) and erythrocyte toxicities. Syringotoxin B was generally less active (0.8 to 200 micrograms/ml) than syringomycin E and syringostatin A against most fungi and was less toxic to erythrocytes. With opportunities for modification, these compounds are potential lead compounds for improved antifungal agents.

Full Text

The Full Text of this article is available as a PDF (194.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adetuyi F. C., Isogai A., Di Giorgio D., Ballio A., Takemoto J. Y. Saprophytic Pseudomonas syringae strain M1 of wheat produces cyclic lipodepsipeptides. FEMS Microbiol Lett. 1995 Aug 15;131(1):63–67. doi: 10.1016/0378-1097(95)00236-x. [DOI] [PubMed] [Google Scholar]
  2. Ballio A., Bossa F., Collina A., Gallo M., Iacobellis N. S., Paci M., Pucci P., Scaloni A., Segre A., Simmaco M. Structure of syringotoxin, a bioactive metabolite of Pseudomonas syringae pv. syringae. FEBS Lett. 1990 Sep 3;269(2):377–380. doi: 10.1016/0014-5793(90)81197-v. [DOI] [PubMed] [Google Scholar]
  3. Ballio A., Bossa F., Di Giorgio D., Ferranti P., Paci M., Pucci P., Scaloni A., Segre A., Strobel G. A. Novel bioactive lipodepsipeptides from Pseudomonas syringae: the pseudomycins. FEBS Lett. 1994 Nov 21;355(1):96–100. doi: 10.1016/0014-5793(94)01179-6. [DOI] [PubMed] [Google Scholar]
  4. Bidwai A. P., Takemoto J. Y. Bacterial phytotoxin, syringomycin, induces a protein kinase-mediated phosphorylation of red beet plasma membrane polypeptides. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6755–6759. doi: 10.1073/pnas.84.19.6755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bidwai A. P., Zhang L., Bachmann R. C., Takemoto J. Y. Mechanism of Action of Pseudomonas syringae Phytotoxin, Syringomycin : Stimulation of Red Beet Plasma Membrane ATPase Activity. Plant Physiol. 1987 Jan;83(1):39–43. doi: 10.1104/pp.83.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brajtburg J., Powderly W. G., Kobayashi G. S., Medoff G. Amphotericin B: current understanding of mechanisms of action. Antimicrob Agents Chemother. 1990 Feb;34(2):183–188. doi: 10.1128/aac.34.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chavanet P., Joly V., Rigaud D., Bolard J., Carbon C., Yeni P. Influence of diet on experimental toxicity of amphotericin B deoxycholate. Antimicrob Agents Chemother. 1994 May;38(5):963–968. doi: 10.1128/aac.38.5.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cliften P., Wang Y., Mochizuki D., Miyakawa T., Wangspa R., Hughes J., Takemoto J. Y. SYR2, a gene necessary for syringomycin growth inhibition of Saccharomyces cerevisiae. Microbiology. 1996 Mar;142(Pt 3):477–484. doi: 10.1099/13500872-142-3-477. [DOI] [PubMed] [Google Scholar]
  9. Feigin A. M., Takemoto J. Y., Wangspa R., Teeter J. H., Brand J. G. Properties of voltage-gated ion channels formed by syringomycin E in planar lipid bilayers. J Membr Biol. 1996 Jan;149(1):41–47. doi: 10.1007/s002329900005. [DOI] [PubMed] [Google Scholar]
  10. Fukuchi N., Isogai A., Nakayama J., Suzuki A. Structure of syringotoxin B, a phytotoxin produced by citrus isolates of Pseudomonas syringae pv. syringae. Agric Biol Chem. 1990 Dec;54(12):3377–3379. [PubMed] [Google Scholar]
  11. Harrison L., Teplow D. B., Rinaldi M., Strobel G. Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad-spectrum antifungal activity. J Gen Microbiol. 1991 Dec;137(12):2857–2865. doi: 10.1099/00221287-137-12-2857. [DOI] [PubMed] [Google Scholar]
  12. Hutchison M. L., Tester M. A., Gross D. C. Role of biosurfactant and ion channel-forming activities of syringomycin in transmembrane ion flux: a model for the mechanism of action in the plant-pathogen interaction. Mol Plant Microbe Interact. 1995 Jul-Aug;8(4):610–620. doi: 10.1094/mpmi-8-0610. [DOI] [PubMed] [Google Scholar]
  13. Mo Y. Y., Gross D. C. Plant signal molecules activate the syrB gene, which is required for syringomycin production by Pseudomonas syringae pv. syringae. J Bacteriol. 1991 Sep;173(18):5784–5792. doi: 10.1128/jb.173.18.5784-5792.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Perkins W. R., Minchey S. R., Boni L. T., Swenson C. E., Popescu M. C., Pasternack R. F., Janoff A. S. Amphotericin B-phospholipid interactions responsible for reduced mammalian cell toxicity. Biochim Biophys Acta. 1992 Jun 30;1107(2):271–282. doi: 10.1016/0005-2736(92)90414-h. [DOI] [PubMed] [Google Scholar]
  15. Quigley N. B., Gross D. C. Syringomycin production among strains of Pseudomonas syringae pv. syringae: conservation of the syrB and syrD genes and activation of phytotoxin production by plant signal molecules. Mol Plant Microbe Interact. 1994 Jan-Feb;7(1):78–90. doi: 10.1094/mpmi-7-0078. [DOI] [PubMed] [Google Scholar]
  16. Segre A., Bachmann R. C., Ballio A., Bossa F., Grgurina I., Iacobellis N. S., Marino G., Pucci P., Simmaco M., Takemoto J. Y. The structure of syringomycins A1, E and G. FEBS Lett. 1989 Sep 11;255(1):27–31. doi: 10.1016/0014-5793(89)81054-3. [DOI] [PubMed] [Google Scholar]
  17. Sternberg S. The emerging fungal threat. Science. 1994 Dec 9;266(5191):1632–1634. doi: 10.1126/science.7702654. [DOI] [PubMed] [Google Scholar]
  18. Suzuki Y. S., Wang Y., Takemoto J. Y. Syringomycin-Stimulated Phosphorylation of the Plasma Membrane H-ATPase from Red Beet Storage Tissue. Plant Physiol. 1992 Aug;99(4):1314–1320. doi: 10.1104/pp.99.4.1314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Taguchi N., Takano Y., Julmanop C., Wang Y., Stock S., Takemoto J., Miyakawa T. Identification and analysis of the Saccharomyces cerevisiae SYR1 gene reveals that ergosterol is involved in the action of syringomycin. Microbiology. 1994 Feb;140(Pt 2):353–359. doi: 10.1099/13500872-140-2-353. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES