Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Dec;40(12):2721–2726. doi: 10.1128/aac.40.12.2721

Effect of foscarnet on quantities of cytomegalovirus and human immunodeficiency virus in blood of persons with AIDS.

H H Balfour Jr 1, C V Fletcher 1, A Erice 1, W K Henry 1, E P Acosta 1, S A Smith 1, M A Holm 1, G Boivin 1, D H Shepp 1, C S Crumpacker 1, C A Eaton 1, S S Martin-Munley 1
PMCID: PMC163610  PMID: 9124829

Abstract

Four intravenous dosages of foscarnet given for 10 days were compared with no therapy in persons with AIDS who had asymptomatic cytomegalovirus (CMV) viremia. CMV viremia was quantitated by endpoint cell dilution microcultures, pp65 antigenemia assay, and measurement of CMV DNA in peripheral blood leukocytes by a quantitative-competitive PCR. Human immunodeficiency virus type 1 (HIV-1) viremia was quantitated by endpoint cell dilution microculture, serum p24 antigen assay, and PCR for HIV-1 RNA in plasma. Twenty-seven subjects who had received a median of 22 months of nucleoside antiretroviral therapy were enrolled. Twenty-two subjects received foscarnet, which was well tolerated and decreased the CMV burden, as reflected by all three indicator assays. During the 10 days of dosing, the level of CMV viremia, as measured by 50 percent tissue culture infective doses, decreased from 117.5 to 12.7 (P = 0.001), the amount of CMV DNA decreased from 20,328 copies to 622 copies per 150,000 leukocytes (P = 0.02), and the level of CMV pp65 antigenemia decreased from 14.9 to 1.6 positive peripheral blood mononuclear cells per 50,000 leukocytes (P = 0.008). A significant pharmacodynamic relationship was found between the peak foscarnet concentration and a decrease in the level of CMV antigenemia (P < 0.05). Foscarnet had no effect on quantitative HIV-1 microcultures during the 10 days of treatment, but the HIV-1 p24 antigen level in serum decreased significantly, from 454 to 305 pg/ml (P = 0.01). Also, a significant pharmacodynamic relationship was seen between plasma HIV-1 RNA concentrations and both peak foscarnet concentration (P < 0.01) and the area under the foscarnet time-concentration curve (P < 0.05). Reductions in the levels of CMV and HIV-1 viremia correlated quantitatively with systemic exposure to foscarnet, whereas control subjects actually experienced an increase in CMV and HIV-1 burdens. The dual antiviral activity of foscarnet shown in this trial encourages investigation of its use in combination with other antiretroviral therapies for persons with AIDS.

Full Text

The Full Text of this article is available as a PDF (210.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boivin G., Erice A., Crane D. D., Dunn D. L., Balfour H. H., Jr Ganciclovir susceptibilities of cytomegalovirus (CMV) isolates from solid organ transplant recipients with CMV viremia after antiviral prophylaxis. J Infect Dis. 1993 Aug;168(2):332–335. doi: 10.1093/infdis/168.2.332. [DOI] [PubMed] [Google Scholar]
  2. Boivin G., Olson C. A., Quirk M. R., St-Cyr S. M., Jordan M. C. Quantitation of human cytomegalovirus glycoprotein H gene in cells using competitive PCR and a rapid fluorescence-based detection system. J Virol Methods. 1995 Feb;51(2-3):329–342. doi: 10.1016/0166-0934(94)00128-4. [DOI] [PubMed] [Google Scholar]
  3. Bowen E. F., Wilson P., Atkins M., Madge S., Griffiths P. D., Johnson M. A., Emery V. C. Natural history of untreated cytomegalovirus retinitis. Lancet. 1995 Dec 23;346(8991-8992):1671–1673. doi: 10.1016/s0140-6736(95)92842-1. [DOI] [PubMed] [Google Scholar]
  4. Cao Y., Qin L., Zhang L., Safrit J., Ho D. D. Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection. N Engl J Med. 1995 Jan 26;332(4):201–208. doi: 10.1056/NEJM199501263320401. [DOI] [PubMed] [Google Scholar]
  5. Chrisp P., Clissold S. P. Foscarnet. A review of its antiviral activity, pharmacokinetic properties and therapeutic use in immunocompromised patients with cytomegalovirus retinitis. Drugs. 1991 Jan;41(1):104–129. doi: 10.2165/00003495-199141010-00009. [DOI] [PubMed] [Google Scholar]
  6. Collier A. C., Coombs R. W., Schoenfeld D. A., Bassett R. L., Timpone J., Baruch A., Jones M., Facey K., Whitacre C., McAuliffe V. J. Treatment of human immunodeficiency virus infection with saquinavir, zidovudine, and zalcitabine. AIDS Clinical Trials Group. N Engl J Med. 1996 Apr 18;334(16):1011–1017. doi: 10.1056/NEJM199604183341602. [DOI] [PubMed] [Google Scholar]
  7. D'Argenio D. Z., Schumitzky A., Wolf W. Simulation of linear compartment models with application to nuclear medicine kinetic modeling. Comput Methods Programs Biomed. 1988 Jul-Aug;27(1):47–54. doi: 10.1016/0169-2607(88)90102-2. [DOI] [PubMed] [Google Scholar]
  8. Davey R. T., Jr, Chaitt D. G., Reed G. F., Freimuth W. W., Herpin B. R., Metcalf J. A., Eastman P. S., Falloon J., Kovacs J. A., Polis M. A. Randomized, controlled phase I/II, trial of combination therapy with delavirdine (U-90152S) and conventional nucleosides in human immunodeficiency virus type 1-infected patients. Antimicrob Agents Chemother. 1996 Jul;40(7):1657–1664. doi: 10.1128/aac.40.7.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Drouet E., Boibieux A., Michelson S., Ecochard R., Biron F., Peyramond D., Colimon R., Denoyel G. Polymerase chain reaction detection of cytomegalovirus DNA in peripheral blood leukocytes as a predictor of cytomegalovirus disease in HIV-infected patients. AIDS. 1993 May;7(5):665–668. doi: 10.1097/00002030-199305000-00009. [DOI] [PubMed] [Google Scholar]
  10. Erice A., Holm M. A., Gill P. C., Henry S., Dirksen C. L., Dunn D. L., Hillam R. P., Balfour H. H., Jr Cytomegalovirus (CMV) antigenemia assay is more sensitive than shell vial cultures for rapid detection of CMV in polymorphonuclear blood leukocytes. J Clin Microbiol. 1992 Nov;30(11):2822–2825. doi: 10.1128/jcm.30.11.2822-2825.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fletcher C. V., Collier A. C., Rhame F. S., Bennett D., Para M. F., Beatty C. C., Jones C. E., Balfour H. H., Jr Foscarnet for suppression of human immunodeficiency virus replication. Antimicrob Agents Chemother. 1994 Mar;38(3):604–607. doi: 10.1128/aac.38.3.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gallant J. E., Moore R. D., Richman D. D., Keruly J., Chaisson R. E. Incidence and natural history of cytomegalovirus disease in patients with advanced human immunodeficiency virus disease treated with zidovudine. The Zidovudine Epidemiology Study Group. J Infect Dis. 1992 Dec;166(6):1223–1227. doi: 10.1093/infdis/166.6.1223. [DOI] [PubMed] [Google Scholar]
  13. Gerna G., Parea M., Percivalle E., Zipeto D., Silini E., Barbarini G., Milanesi G. Human cytomegalovirus viraemia in HIV-1-seropositive patients at various clinical stages of infection. AIDS. 1990 Oct;4(10):1027–1031. doi: 10.1097/00002030-199010000-00014. [DOI] [PubMed] [Google Scholar]
  14. Jacobson M. A., Crowe S., Levy J., Aweeka F., Gambertoglio J., McManus N., Mills J. Effect of Foscarnet therapy on infection with human immunodeficiency virus in patients with AIDS. J Infect Dis. 1988 Oct;158(4):862–865. [PubMed] [Google Scholar]
  15. Japour A. J., Mayers D. L., Johnson V. A., Kuritzkes D. R., Beckett L. A., Arduino J. M., Lane J., Black R. J., Reichelderfer P. S., D'Aquila R. T. Standardized peripheral blood mononuclear cell culture assay for determination of drug susceptibilities of clinical human immunodeficiency virus type 1 isolates. The RV-43 Study Group, the AIDS Clinical Trials Group Virology Committee Resistance Working Group. Antimicrob Agents Chemother. 1993 May;37(5):1095–1101. doi: 10.1128/aac.37.5.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kaiser L., Perrin L., Hirschel B., Furrer H., Von Overbeck J., Olmari M., Yerly S. Foscarnet decreases human immunodeficiency virus RNA. J Infect Dis. 1995 Jul;172(1):225–227. doi: 10.1093/infdis/172.1.225. [DOI] [PubMed] [Google Scholar]
  17. Mellors J. W., Bazmi H. Z., Schinazi R. F., Roy B. M., Hsiou Y., Arnold E., Weir J., Mayers D. L. Novel mutations in reverse transcriptase of human immunodeficiency virus type 1 reduce susceptibility to foscarnet in laboratory and clinical isolates. Antimicrob Agents Chemother. 1995 May;39(5):1087–1092. doi: 10.1128/aac.39.5.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mellors J. W., Kingsley L. A., Rinaldo C. R., Jr, Todd J. A., Hoo B. S., Kokka R. P., Gupta P. Quantitation of HIV-1 RNA in plasma predicts outcome after seroconversion. Ann Intern Med. 1995 Apr 15;122(8):573–579. doi: 10.7326/0003-4819-122-8-199504150-00003. [DOI] [PubMed] [Google Scholar]
  19. Mulder J., McKinney N., Christopherson C., Sninsky J., Greenfield L., Kwok S. Rapid and simple PCR assay for quantitation of human immunodeficiency virus type 1 RNA in plasma: application to acute retroviral infection. J Clin Microbiol. 1994 Feb;32(2):292–300. doi: 10.1128/jcm.32.2.292-300.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. O'Brien W. A., Hartigan P. M., Martin D., Esinhart J., Hill A., Benoit S., Rubin M., Simberkoff M. S., Hamilton J. D. Changes in plasma HIV-1 RNA and CD4+ lymphocyte counts and the risk of progression to AIDS. Veterans Affairs Cooperative Study Group on AIDS. N Engl J Med. 1996 Feb 15;334(7):426–431. doi: 10.1056/NEJM199602153340703. [DOI] [PubMed] [Google Scholar]
  21. Pantaleo G., Menzo S., Vaccarezza M., Graziosi C., Cohen O. J., Demarest J. F., Montefiori D., Orenstein J. M., Fox C., Schrager L. K. Studies in subjects with long-term nonprogressive human immunodeficiency virus infection. N Engl J Med. 1995 Jan 26;332(4):209–216. doi: 10.1056/NEJM199501263320402. [DOI] [PubMed] [Google Scholar]
  22. Pettersson K. J., Nordgren T., Westerlund D. Determination of phosphonoformate (foscarnet) in biological fluids by ion-pair reversed-phase liquid chromatography. J Chromatogr. 1989 Mar 24;488(2):447–455. doi: 10.1016/s0378-4347(00)82968-0. [DOI] [PubMed] [Google Scholar]
  23. Rasmussen L., Morris S., Zipeto D., Fessel J., Wolitz R., Dowling A., Merigan T. C. Quantitation of human cytomegalovirus DNA from peripheral blood cells of human immunodeficiency virus-infected patients could predict cytomegalovirus retinitis. J Infect Dis. 1995 Jan;171(1):177–182. doi: 10.1093/infdis/171.1.177. [DOI] [PubMed] [Google Scholar]
  24. Salmon D., Lacassin F., Harzic M., Leport C., Perronne C., Bricaire F., Brun-Vezinet F., Vilde J. L. Predictive value of cytomegalovirus viraemia for the occurrence of CMV organ involvement in AIDS. J Med Virol. 1990 Nov;32(3):160–163. doi: 10.1002/jmv.1890320306. [DOI] [PubMed] [Google Scholar]
  25. Saltzman R. L., Quirk M. R., Jordan M. C. High levels of circulating cytomegalovirus DNA reflect visceral organ disease in viremic immunosuppressed patients other than marrow recipients. J Clin Invest. 1992 Nov;90(5):1832–1838. doi: 10.1172/JCI116059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Spector S. A., Merrill R., Wolf D., Dankner W. M. Detection of human cytomegalovirus in plasma of AIDS patients during acute visceral disease by DNA amplification. J Clin Microbiol. 1992 Sep;30(9):2359–2365. doi: 10.1128/jcm.30.9.2359-2365.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wagstaff A. J., Bryson H. M. Foscarnet. A reappraisal of its antiviral activity, pharmacokinetic properties and therapeutic use in immunocompromised patients with viral infections. Drugs. 1994 Aug;48(2):199–226. doi: 10.2165/00003495-199448020-00007. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES