Abstract
Ten epidemiologically unrelated Staphylococcus aureus isolates with borderline levels of susceptibility to antistaphylococcal penicillinase-resistant penicillins (PRPs) were investigated together with appropriate S. aureus control strains. By a nitrocefin microplate assay, all borderline PRP-susceptible test strains were found to produce comparable amounts of beta-lactamase. Hydrolytic activity against another chromogenic substrate (PADAC) and against the PRPs was also demonstrated in membrane preparations from induced cells of 9 of the 10 borderline test strains. When bacterial membranes were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, two methicillin-inducible bands of about 32 and 31 kDa were detected, after Coomassie blue staining, in the membrane protein patterns of the same nine borderline test strains. By gel renaturation and zymographic detection of beta-lactamase activity, both methicillin-inducible membrane proteins were detected with nitrocefin as a substrate, whereas only one band (presumably the smaller protein) was detected with PADAC. With the remaining borderline test strain (a40), only the larger band was detected in the renatured gels with nitrocefin as a substrate. Plasmid DNA analysis revealed that the borderline susceptible test strains, again with the exception of a40, shared a 17.2-kb plasmid yielding four HindIII fragments of 7.0, 5.3, 3.5, and 1.4 kb. In Western blot (immunoblot) experiments using rabbit antiserum to penicillin-binding protein (PBP) 2a, test strain a40, which did not share a number of features characteristically associated with the other borderline test strains, was eventually shown to produce PBP 2a. Five other S. aureus strains, belonging to phage group 94/96, were found to display the borderline phenotype, including such distinguishing features as the membrane-associated PRP- and PADAC-hydrolyzing activity, the two methicillin-inducible membrane proteins, and the 17.2-kb plasmid. These results suggest that borderline susceptible S. aureus strains share more common features than reduced susceptibility to PRPs.
Full Text
The Full Text of this article is available as a PDF (508.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asheshov E. H., Coe A. W., Porthouse A. Properties of strains of Staphylococcus aureus in the 94, 96 complex. J Med Microbiol. 1977 May;10(2):171–178. doi: 10.1099/00222615-10-2-171. [DOI] [PubMed] [Google Scholar]
- Barg N., Chambers H., Kernodle D. Borderline susceptibility to antistaphylococcal penicillins is not conferred exclusively by the hyperproduction of beta-lactamase. Antimicrob Agents Chemother. 1991 Oct;35(10):1975–1979. doi: 10.1128/aac.35.10.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berger-Bächi B., Strässle A., Kayser F. H. Natural methicillin resistance in comparison with that selected by in-vitro drug exposure in Staphylococcus aureus. J Antimicrob Chemother. 1989 Feb;23(2):179–188. doi: 10.1093/jac/23.2.179. [DOI] [PubMed] [Google Scholar]
- Chambers H. F., Archer G., Matsuhashi M. Low-level methicillin resistance in strains of Staphylococcus aureus. Antimicrob Agents Chemother. 1989 Apr;33(4):424–428. doi: 10.1128/aac.33.4.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerberding J. L., Miick C., Liu H. H., Chambers H. F. Comparison of conventional susceptibility tests with direct detection of penicillin-binding protein 2a in borderline oxacillin-resistant strains of Staphylococcus aureus. Antimicrob Agents Chemother. 1991 Dec;35(12):2574–2579. doi: 10.1128/aac.35.12.2574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hackbarth C. J., Chambers H. F. blaI and blaR1 regulate beta-lactamase and PBP 2a production in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1993 May;37(5):1144–1149. doi: 10.1128/aac.37.5.1144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hackbarth C. J., Kocagoz T., Kocagoz S., Chambers H. F. Point mutations in Staphylococcus aureus PBP 2 gene affect penicillin-binding kinetics and are associated with resistance. Antimicrob Agents Chemother. 1995 Jan;39(1):103–106. doi: 10.1128/aac.39.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartman B. J., Tomasz A. Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J Bacteriol. 1984 May;158(2):513–516. doi: 10.1128/jb.158.2.513-516.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacoby G. A., Sutton L. beta-Lactamases and beta-lactam resistance in Escherichia coli. Antimicrob Agents Chemother. 1985 Nov;28(5):703–705. doi: 10.1128/aac.28.5.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jorgensen J. H., Crawford S. A., Alexander G. A. Pyridinium-2-azo-p-dimethylaniline chromophore, a new chromogenic cephalosporin for rapid beta-lactamase testing. Antimicrob Agents Chemother. 1982 Jul;22(1):162–164. doi: 10.1128/aac.22.1.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kobayashi T., Zhu Y. F., Nicholls N. J., Lampen J. O. A second regulatory gene, blaR1, encoding a potential penicillin-binding protein required for induction of beta-lactamase in Bacillus licheniformis. J Bacteriol. 1987 Sep;169(9):3873–3878. doi: 10.1128/jb.169.9.3873-3878.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lyon B. R., Skurray R. Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol Rev. 1987 Mar;51(1):88–134. doi: 10.1128/mr.51.1.88-134.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Massidda O., Montanari M. P., Mingoia M., Varaldo P. E. Cloning and expression of the penicillinase from a borderline methicillin-susceptible Staphylococcus aureus strain in Escherichia coli. FEMS Microbiol Lett. 1994 Jun 15;119(3):263–269. doi: 10.1111/j.1574-6968.1994.tb06899.x. [DOI] [PubMed] [Google Scholar]
- Massidda O., Montanari M. P., Varaldo P. E. Evidence for a methicillin-hydrolysing beta-lactamase in Staphylococcus aureus strains with borderline susceptibility to this drug. FEMS Microbiol Lett. 1992 May 1;71(3):223–227. doi: 10.1016/0378-1097(92)90713-x. [DOI] [PubMed] [Google Scholar]
- Massidda O., Rossolini G. M., Satta G. The Aeromonas hydrophila cphA gene: molecular heterogeneity among class B metallo-beta-lactamases. J Bacteriol. 1991 Aug;173(15):4611–4617. doi: 10.1128/jb.173.15.4611-4617.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDougal L. K., Thornsberry C. New recommendations for disk diffusion antimicrobial susceptibility tests for methicillin-resistant (heteroresistant) staphylococci. J Clin Microbiol. 1984 Apr;19(4):482–488. doi: 10.1128/jcm.19.4.482-488.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDougal L. K., Thornsberry C. The role of beta-lactamase in staphylococcal resistance to penicillinase-resistant penicillins and cephalosporins. J Clin Microbiol. 1986 May;23(5):832–839. doi: 10.1128/jcm.23.5.832-839.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McMurray L. W., Kernodle D. S., Barg N. L. Characterization of a widespread strain of methicillin-susceptible Staphylococcus aureus associated with nosocomial infections. J Infect Dis. 1990 Sep;162(3):759–762. doi: 10.1093/infdis/162.3.759. [DOI] [PubMed] [Google Scholar]
- Montanari M. P., Tonin E., Biavasco F., Varaldo P. E. Further characterization of borderline methicillin-resistant Staphylococcus aureus and analysis of penicillin-binding proteins. Antimicrob Agents Chemother. 1990 May;34(5):911–913. doi: 10.1128/aac.34.5.911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosdahl V. T., Rosendal K. Correlation of penicillinase production with phage type and susceptibility to antibiotics and heavy metals in Staphylococcus aureus. J Med Microbiol. 1983 Nov;16(4):391–399. doi: 10.1099/00222615-16-4-391. [DOI] [PubMed] [Google Scholar]
- Rowland S. J., Dyke K. G. Tn552, a novel transposable element from Staphylococcus aureus. Mol Microbiol. 1990 Jun;4(6):961–975. doi: 10.1111/j.1365-2958.1990.tb00669.x. [DOI] [PubMed] [Google Scholar]
- Shalita Z., Murphy E., Novick R. P. Penicillinase plasmids of Staphylococcus aureus: structural and evolutionary relationships. Plasmid. 1980 May;3(3):291–311. doi: 10.1016/0147-619x(80)90042-6. [DOI] [PubMed] [Google Scholar]
- Sierra-Madero J. G., Knapp C., Karaffa C., Washington J. A. Role of beta-lactamase and different testing conditions in oxacillin-borderline-susceptible staphylococci. Antimicrob Agents Chemother. 1988 Dec;32(12):1754–1757. doi: 10.1128/aac.32.12.1754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thornsberry C., McDougal L. K. Successful use of broth microdilution in susceptibility tests for methicillin-resistant (heteroresistant) staphylococci. J Clin Microbiol. 1983 Nov;18(5):1084–1091. doi: 10.1128/jcm.18.5.1084-1091.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomasz A., Drugeon H. B., de Lencastre H. M., Jabes D., McDougall L., Bille J. New mechanism for methicillin resistance in Staphylococcus aureus: clinical isolates that lack the PBP 2a gene and contain normal penicillin-binding proteins with modified penicillin-binding capacity. Antimicrob Agents Chemother. 1989 Nov;33(11):1869–1874. doi: 10.1128/aac.33.11.1869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tonin E., Tomasz A. Beta-lactam-specific resistant mutants of Staphylococcus aureus. Antimicrob Agents Chemother. 1986 Oct;30(4):577–583. doi: 10.1128/aac.30.4.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Varaldo P. E., Biavasco F., Montanari M. P. Heteroresistant and nonheteroresistant methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 1987 Feb;25(2):463–464. doi: 10.1128/jcm.25.2.463-464.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Varaldo P. E., Montanari M. P., Biavasco F., Manso E., Ripa S., Santacroce F. Survey of clinical isolates of Staphylococcus aureus for borderline susceptibility to antistaphylococcal penicillins. Eur J Clin Microbiol Infect Dis. 1993 Sep;12(9):677–682. doi: 10.1007/BF02009379. [DOI] [PubMed] [Google Scholar]
- Varaldo P. E. The 'borderline methicillin-susceptible' Staphylococcus aureus. J Antimicrob Chemother. 1993 Jan;31(1):1–4. doi: 10.1093/jac/31.1.1. [DOI] [PubMed] [Google Scholar]
- Zhu Y. F., Curran I. H., Joris B., Ghuysen J. M., Lampen J. O. Identification of BlaR, the signal transducer for beta-lactamase production in Bacillus licheniformis, as a penicillin-binding protein with strong homology to the OXA-2 beta-lactamase (class D) of Salmonella typhimurium. J Bacteriol. 1990 Feb;172(2):1137–1141. doi: 10.1128/jb.172.2.1137-1141.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zierdt C. H., Hosein I. K., Shively R., MacLowry J. D. Phage pattern-specific oxacillin-resistant and borderline oxacillin-resistant Staphylococcus aureus in U.S. hospitals: epidemiological significance. J Clin Microbiol. 1992 Jan;30(1):252–254. doi: 10.1128/jcm.30.1.252-254.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]