Abstract
Thiolactomycin (TLM) possesses in vivo antimycobacterial activity against the saprophytic strain Mycobacterium smegmatis mc2155 and the virulent strain M. tuberculosis Erdman, resulting in complete inhibition of growth on solid media at 75 and 25 micrograms/ml, respectively. Use of an in vitro murine macrophage model also demonstrated the killing of viable intracellular M. tuberculosis in a dose-dependent manner. Through the use of in vivo [1,2-14C]acetate labeling of M. smegmatis, TLM was shown to inhibit the synthesis of both fatty acids and mycolic acids. However, synthesis of the shorter-chain alpha'-mycolates of M. smegmatis was not inhibited by TLM, whereas synthesis of the characteristic longer-chain alpha-mycolates and epoxymycolates was almost completely inhibited at 75 micrograms/ml. The use of M. smegmatis cell extracts demonstrated that TLM specifically inhibited the mycobacterial acyl carrier protein-dependent type II fatty acid synthase (FAS-II) but not the multifunctional type I fatty acid synthase (FAS-I). In addition, selective inhibition of long-chain mycolate synthesis by TLM was demonstrated in a dose-response manner in purified, cell wall-containing extracts of M. smegmatis cells. The in vivo and in vitro data and knowledge of the mechanism of TLM resistance in Escherichia coli suggest that two distinct TLM targets exist in mycobacteria, the beta-ketoacyl-acyl carrier protein synthases involved in FAS-II and the elongation steps leading to the synthesis of the alpha-mycolates and oxygenated mycolates. The efficacy of TLM against M. smegmatis and M. tuberculosis provides the prospects of identifying fatty acid and mycolic acid biosynthetic genes and revealing a novel range of chemotherapeutic agents directed against M. tuberculosis.
Full Text
The Full Text of this article is available as a PDF (313.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Banerjee A., Dubnau E., Quemard A., Balasubramanian V., Um K. S., Wilson T., Collins D., de Lisle G., Jacobs W. R., Jr inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science. 1994 Jan 14;263(5144):227–230. doi: 10.1126/science.8284673. [DOI] [PubMed] [Google Scholar]
- Besra G. S., Khoo K. H., McNeil M. R., Dell A., Morris H. R., Brennan P. J. A new interpretation of the structure of the mycolyl-arabinogalactan complex of Mycobacterium tuberculosis as revealed through characterization of oligoglycosylalditol fragments by fast-atom bombardment mass spectrometry and 1H nuclear magnetic resonance spectroscopy. Biochemistry. 1995 Apr 4;34(13):4257–4266. doi: 10.1021/bi00013a015. [DOI] [PubMed] [Google Scholar]
- Bloch K. Control mechanisms for fatty acid synthesis in Mycobacterium smegmatis. Adv Enzymol Relat Areas Mol Biol. 1977;45:1–84. doi: 10.1002/9780470122907.ch1. [DOI] [PubMed] [Google Scholar]
- Bloch K. Fatty acid synthases from Mycobacterium phlei. Methods Enzymol. 1975;35:84–90. doi: 10.1016/0076-6879(75)35141-0. [DOI] [PubMed] [Google Scholar]
- Cohn M. L., Waggoner R. F., McClatchy J. K. The 7H11 medium for the cultivation of mycobacteria. Am Rev Respir Dis. 1968 Aug;98(2):295–296. doi: 10.1164/arrd.1968.98.2.295. [DOI] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Furukawa H., Tsay J. T., Jackowski S., Takamura Y., Rock C. O. Thiolactomycin resistance in Escherichia coli is associated with the multidrug resistance efflux pump encoded by emrAB. J Bacteriol. 1993 Jun;175(12):3723–3729. doi: 10.1128/jb.175.12.3723-3729.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- George K. M., Yuan Y., Sherman D. R., Barry C. E., 3rd The biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Identification and functional analysis of CMAS-2. J Biol Chem. 1995 Nov 10;270(45):27292–27298. doi: 10.1074/jbc.270.45.27292. [DOI] [PubMed] [Google Scholar]
- Hayashi T., Yamamoto O., Sasaki H., Kawaguchi A., Okazaki H. Mechanism of action of the antibiotic thiolactomycin inhibition of fatty acid synthesis of Escherichia coli. Biochem Biophys Res Commun. 1983 Sep 30;115(3):1108–1113. doi: 10.1016/s0006-291x(83)80050-3. [DOI] [PubMed] [Google Scholar]
- Jackowski S., Murphy C. M., Cronan J. E., Jr, Rock C. O. Acetoacetyl-acyl carrier protein synthase. A target for the antibiotic thiolactomycin. J Biol Chem. 1989 May 5;264(13):7624–7629. [PubMed] [Google Scholar]
- Lacave C., Lanéelle M. A., Lanéelle G. Mycolic acid synthesis by Mycobacterium aurum cell-free extracts. Biochim Biophys Acta. 1990 Feb 23;1042(3):315–323. doi: 10.1016/0005-2760(90)90159-u. [DOI] [PubMed] [Google Scholar]
- Lowe P. N., Rhodes S. Purification and characterization of [acyl-carrier-protein] acetyltransferase from Escherichia coli. Biochem J. 1988 Mar 15;250(3):789–796. doi: 10.1042/bj2500789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magnuson K., Jackowski S., Rock C. O., Cronan J. E., Jr Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol Rev. 1993 Sep;57(3):522–542. doi: 10.1128/mr.57.3.522-542.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mikusová K., Slayden R. A., Besra G. S., Brennan P. J. Biogenesis of the mycobacterial cell wall and the site of action of ethambutol. Antimicrob Agents Chemother. 1995 Nov;39(11):2484–2489. doi: 10.1128/aac.39.11.2484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyakawa S., Suzuki K., Noto T., Harada Y., Okazaki H. Thiolactomycin, a new antibiotic. IV. Biological properties and chemotherapeutic activity in mice. J Antibiot (Tokyo) 1982 Apr;35(4):411–419. doi: 10.7164/antibiotics.35.411. [DOI] [PubMed] [Google Scholar]
- Nishida I., Kawaguchi A., Yamada M. Effect of thiolactomycin on the individual enzymes of the fatty acid synthase system in Escherichia coli. J Biochem. 1986 May;99(5):1447–1454. doi: 10.1093/oxfordjournals.jbchem.a135614. [DOI] [PubMed] [Google Scholar]
- Noto T., Miyakawa S., Oishi H., Endo H., Okazaki H. Thiolactomycin, a new antibiotic. III. In vitro antibacterial activity. J Antibiot (Tokyo) 1982 Apr;35(4):401–410. doi: 10.7164/antibiotics.35.401. [DOI] [PubMed] [Google Scholar]
- Oishi H., Noto T., Sasaki H., Suzuki K., Hayashi T., Okazaki H., Ando K., Sawada M. Thiolactomycin, a new antibiotic. I. Taxonomy of the producing organism, fermentation and biological properties. J Antibiot (Tokyo) 1982 Apr;35(4):391–395. doi: 10.7164/antibiotics.35.391. [DOI] [PubMed] [Google Scholar]
- Peterson D. O., Bloch K. Mycobacterium smegmatis fatty acid synthetase. Long chain transacylase chain length specificity. J Biol Chem. 1977 Aug 25;252(16):5735–5739. [PubMed] [Google Scholar]
- Qureshi N., Sathyamoorthy N., Takayama K. Biosynthesis of C30 to C56 fatty acids by an extract of Mycobacterium tuberculosis H37Ra. J Bacteriol. 1984 Jan;157(1):46–52. doi: 10.1128/jb.157.1.46-52.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quémard A., Mazères S., Sut A., Lanéelle G., Lacave C. Certain properties of isoniazid inhibition of mycolic acid synthesis in cell-free systems of M. aurum and M. avium. Biochim Biophys Acta. 1995 Jan 3;1254(1):98–104. doi: 10.1016/0005-2760(94)00174-w. [DOI] [PubMed] [Google Scholar]
- Quémard A., Sacchettini J. C., Dessen A., Vilcheze C., Bittman R., Jacobs W. R., Jr, Blanchard J. S. Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistry. 1995 Jul 4;34(26):8235–8241. doi: 10.1021/bi00026a004. [DOI] [PubMed] [Google Scholar]
- Sasaki H., Oishi H., Hayashi T., Matsuura I., Ando K., Sawada M. Thiolactomycin, a new antibiotic. II. Structure elucidation. J Antibiot (Tokyo) 1982 Apr;35(4):396–400. doi: 10.7164/antibiotics.35.396. [DOI] [PubMed] [Google Scholar]
- Stone M. S., Wallace R. J., Jr, Swenson J. M., Thornsberry C., Christensen L. A. Agar disk elution method for susceptibility testing of Mycobacterium marinum and Mycobacterium fortuitum complex to sulfonamides and antibiotics. Antimicrob Agents Chemother. 1983 Oct;24(4):486–493. doi: 10.1128/aac.24.4.486. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takayama K., Schnoes H. K., Armstrong E. L., Boyle R. W. Site of inhibitory action of isoniazid in the synthesis of mycolic acids in Mycobacterium tuberculosis. J Lipid Res. 1975 Jul;16(4):308–317. [PubMed] [Google Scholar]
- Tsay J. T., Rock C. O., Jackowski S. Overproduction of beta-ketoacyl-acyl carrier protein synthase I imparts thiolactomycin resistance to Escherichia coli K-12. J Bacteriol. 1992 Jan;174(2):508–513. doi: 10.1128/jb.174.2.508-513.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsukamoto Y., Wong H., Mattick J. S., Wakil S. J. The architecture of the animal fatty acid synthetase complex. IV. Mapping of active centers and model for the mechanism of action. J Biol Chem. 1983 Dec 25;258(24):15312–15322. [PubMed] [Google Scholar]
- Wheeler P. R., Besra G. S., Minnikin D. E., Ratledge C. Stimulation of mycolic acid biosynthesis by incorporation of cis-tetracos-5-enoic acid in a cell-wall preparation from Mycobacterium smegmatis. Biochim Biophys Acta. 1993 Apr 7;1167(2):182–188. doi: 10.1016/0005-2760(93)90160-b. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Heym B., Allen B., Young D., Cole S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature. 1992 Aug 13;358(6387):591–593. doi: 10.1038/358591a0. [DOI] [PubMed] [Google Scholar]
