Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Dec;40(12):2829–2834. doi: 10.1128/aac.40.12.2829

Efficacies of cefotaxime and ceftriaxone in a mouse model of pneumonia induced by two penicillin- and cephalosporin-resistant strains of Streptococcus pneumoniae.

C Sauve 1, E Azoulay-Dupuis 1, P Moine 1, C Darras-Joly 1, V Rieux 1, C Carbon 1, J P Bédos 1
PMCID: PMC163631  PMID: 9124850

Abstract

We previously demonstrated the efficacy of ceftriaxone (CRO), at 50 mg/kg of body weight every 12 h, against a highly penicillin-resistant (MIC, 4 micrograms/ml) Streptococcus pneumoniae strain with low-level resistance to CRO (MIC, 0.5 microgram/ml) in a leukopenic-mouse pneumonia model (P. Moine, E. Vallée, E. Azoulay-Dupuis, P. Bourget, J.-P. Bédos, J. Bauchet, and J.-J. Pocidalo, Antimicrob. Agents Chemother. 38:1953-1958, 1994). In the present study, we assessed the activity of CRO versus those of cefotaxime (CTX) and amoxicillin (AMO) against two highly penicillin- and cephalosporin-resistant S. pneumoniae strains (P40422 and P40984) (MICs of 2 and 8 for penicillin, 2 and 4 for AMO, and 4 and 8 for CRO or CTX, respectively). Against both strains, a greater than an 80% cumulative survival rate was observed with CRO at a dose of 100 or 200 mg/kg every 12 h (dose/MIC ratio, 25). With CTX, a high dosage of 400 mg/kg (dose/MIC ratio, 100 or 50) administered every 8 h (TID) was needed to protect 66 and 75% of the animals, respectively, with no statistically significant differences versus CRO. Against the P40422 strain, CRO (100 mg/kg) produced the greatest bactericidal effect, from the 8th to the 24th hour after a single injection (1.8-log-unit reduction over 24 h), and the fastest bacterial pulmonary clearance during treatment; with CTX, only multiple injections at a high dosage, i.e., 400 mg/kg TID, demonstrated a significant bactericidal effect. AMO in a high dosage, 400 mg/kg (dose/MIC ratio, 200) TID, showed good activity only against the P40422 strain. Despite the identical MICs of CTX and CRO, the longer time (3.6 to 4.6 h) that serum CRO concentrations remained above the MICs for the pathogens at a dose of 100 mg/kg resulted in greater efficacy versus CTX against highly penicillin- and cephalosporin-resistant S. pneumoniae strains.

Full Text

The Full Text of this article is available as a PDF (228.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen K. D. Penicillin-resistant pneumococci. J Hosp Infect. 1991 Jan;17(1):3–13. doi: 10.1016/0195-6701(91)90072-g. [DOI] [PubMed] [Google Scholar]
  2. Angehrn P., Probst P. J., Reiner R., Then R. L. Ro 13-9904, a long-acting broad-spectrum cephalosporin: in vitro and in vivo studies. Antimicrob Agents Chemother. 1980 Dec;18(6):913–921. doi: 10.1128/aac.18.6.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Appelbaum P. C. Antimicrobial resistance in Streptococcus pneumoniae: an overview. Clin Infect Dis. 1992 Jul;15(1):77–83. doi: 10.1093/clinids/15.1.77. [DOI] [PubMed] [Google Scholar]
  4. Appelbaum P. C. World-wide development of antibiotic resistance in pneumococci. Eur J Clin Microbiol. 1987 Aug;6(4):367–377. doi: 10.1007/BF02013089. [DOI] [PubMed] [Google Scholar]
  5. Azoulay-Dupuis E., Bedos J. P., Vallée E., Hardy D. J., Swanson R. N., Pocidalo J. J. Antipneumococcal activity of ciprofloxacin, ofloxacin, and temafloxacin in an experimental mouse pneumonia model at various stages of the disease. J Infect Dis. 1991 Feb;163(2):319–324. doi: 10.1093/infdis/163.2.319. [DOI] [PubMed] [Google Scholar]
  6. Bergan T. Pharmacokinetic properties of the cephalosporins. Drugs. 1987;34 (Suppl 2):89–104. doi: 10.2165/00003495-198700342-00008. [DOI] [PubMed] [Google Scholar]
  7. Beskid G., Christenson J. G., Cleeland R., DeLorenzo W., Trown P. W. In vivo activity of ceftriaxone (Ro 13-9904), a new broad-spectrum semisynthetic cephalosporin. Antimicrob Agents Chemother. 1981 Aug;20(2):159–167. doi: 10.1128/aac.20.2.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Boswell T. C., Nye K. J., Smith E. G. Penicillin- and penicillin-cephalosporin-resistant pneumococcal septicaemia. J Antimicrob Chemother. 1994 Nov;34(5):844–845. doi: 10.1093/jac/34.5.844. [DOI] [PubMed] [Google Scholar]
  9. Briles D. E., Crain M. J., Gray B. M., Forman C., Yother J. Strong association between capsular type and virulence for mice among human isolates of Streptococcus pneumoniae. Infect Immun. 1992 Jan;60(1):111–116. doi: 10.1128/iai.60.1.111-116.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brogden R. N., Ward A. Ceftriaxone. A reappraisal of its antibacterial activity and pharmacokinetic properties, and an update on its therapeutic use with particular reference to once-daily administration. Drugs. 1988 Jun;35(6):604–645. doi: 10.2165/00003495-198835060-00002. [DOI] [PubMed] [Google Scholar]
  11. Bédos J. P., Rolin O., Bouanchaud D. H., Pocidalo J. J. Relation entre virulence et résistance aux antibiotiques des pneumocoques. Apport des donnée expérimentales sur un modèle animal. Pathol Biol (Paris) 1991 Dec;39(10):984–990. [PubMed] [Google Scholar]
  12. Christ W. Pharmacological properties of cephalosporins. Infection. 1991;19 (Suppl 5):S244–S252. doi: 10.1007/BF01645535. [DOI] [PubMed] [Google Scholar]
  13. Cleeland R., Squires E. Antimicrobial activity of ceftriaxone: a review. Am J Med. 1984 Oct 19;77(4C):3–11. [PubMed] [Google Scholar]
  14. Drusano G. L. Role of pharmacokinetics in the outcome of infections. Antimicrob Agents Chemother. 1988 Mar;32(3):289–297. doi: 10.1128/aac.32.3.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fang G. D., Fine M., Orloff J., Arisumi D., Yu V. L., Kapoor W., Grayston J. T., Wang S. P., Kohler R., Muder R. R. New and emerging etiologies for community-acquired pneumonia with implications for therapy. A prospective multicenter study of 359 cases. Medicine (Baltimore) 1990 Sep;69(5):307–316. doi: 10.1097/00005792-199009000-00004. [DOI] [PubMed] [Google Scholar]
  16. Figueiredo A. M., Connor J. D., Severin A., Vaz Pato M. V., Tomasz A. A pneumococcal clinical isolate with high-level resistance to cefotaxime and ceftriaxone. Antimicrob Agents Chemother. 1992 Apr;36(4):886–889. doi: 10.1128/aac.36.4.886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Friedland I. R., McCracken G. H., Jr Management of infections caused by antibiotic-resistant Streptococcus pneumoniae. N Engl J Med. 1994 Aug 11;331(6):377–382. doi: 10.1056/NEJM199408113310607. [DOI] [PubMed] [Google Scholar]
  18. Frimodt-Møller N., Bentzon M. W., Thomsen V. F. Experimental infection with Streptococcus pneumoniae in mice: correlation of in vitro activity and pharmacokinetic parameters with in vivo effect for 14 cephalosporins. J Infect Dis. 1986 Sep;154(3):511–517. doi: 10.1093/infdis/154.3.511. [DOI] [PubMed] [Google Scholar]
  19. Frimodt-Møller N., Bentzon M. W., Thomsen V. F. Experimental pneumococcus infection in mice: comparative in vitro and in vivo effect of cefuroxime, cefotaxime and ceftriaxone. Acta Pathol Microbiol Immunol Scand B. 1987 Oct;95(5):261–267. doi: 10.1111/j.1699-0463.1987.tb03123.x. [DOI] [PubMed] [Google Scholar]
  20. Greenblatt D. J., Kock-Weser J. Drug therapy. Clinical Pharmacokinetics (first of two parts). N Engl J Med. 1975 Oct 2;293(14):702–705. doi: 10.1056/NEJM197510022931406. [DOI] [PubMed] [Google Scholar]
  21. Gutmann L., Vincent S., Billot-Klein D., Acar J. F., Mrèna E., Williamson R. Involvement of penicillin-binding protein 2 with other penicillin-binding proteins in lysis of Escherichia coli by some beta-lactam antibiotics alone and in synergistic lytic effect of amdinocillin (mecillinam). Antimicrob Agents Chemother. 1986 Dec;30(6):906–912. doi: 10.1128/aac.30.6.906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hakenbeck R., Ellerbrok H., Briese T., Handwerger S., Tomasz A. Penicillin-binding proteins of penicillin-susceptible and -resistant pneumococci: immunological relatedness of altered proteins and changes in peptides carrying the beta-lactam binding site. Antimicrob Agents Chemother. 1986 Oct;30(4):553–558. doi: 10.1128/aac.30.4.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. John C. C. Treatment failure with use of a third-generation cephalosporin for penicillin-resistant pneumococcal meningitis: case report and review. Clin Infect Dis. 1994 Feb;18(2):188–193. doi: 10.1093/clinids/18.2.188. [DOI] [PubMed] [Google Scholar]
  24. Klugman K. P. Pneumococcal resistance to antibiotics. Clin Microbiol Rev. 1990 Apr;3(2):171–196. doi: 10.1128/cmr.3.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. López R., Ronda C., García E. Autolysins are direct involved in the bactericidal effect caused by penicillin in wild type and in tolerant pneumococci. FEMS Microbiol Lett. 1990 Jan 1;54(1-3):317–322. doi: 10.1016/0378-1097(90)90305-a. [DOI] [PubMed] [Google Scholar]
  26. Marrie T. J., Durant H., Yates L. Community-acquired pneumonia requiring hospitalization: 5-year prospective study. Rev Infect Dis. 1989 Jul-Aug;11(4):586–599. doi: 10.1093/clinids/11.4.586. [DOI] [PubMed] [Google Scholar]
  27. McNamara P. J., Trueb V., Stoeckel K. Protein binding of ceftriaxone in extravascular fluids. J Pharm Sci. 1988 May;77(5):401–404. doi: 10.1002/jps.2600770509. [DOI] [PubMed] [Google Scholar]
  28. Moine P., Vallée E., Azoulay-Dupuis E., Bourget P., Bédos J. P., Bauchet J., Pocidalo J. J. In vivo efficacy of a broad-spectrum cephalosporin, ceftriaxone, against penicillin-susceptible and -resistant strains of Streptococcus pneumoniae in a mouse pneumonia model. Antimicrob Agents Chemother. 1994 Sep;38(9):1953–1958. doi: 10.1128/aac.38.9.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Munoz R., Musser J. M., Crain M., Briles D. E., Marton A., Parkinson A. J., Sorensen U., Tomasz A. Geographic distribution of penicillin-resistant clones of Streptococcus pneumoniae: characterization by penicillin-binding protein profile, surface protein A typing, and multilocus enzyme analysis. Clin Infect Dis. 1992 Jul;15(1):112–118. doi: 10.1093/clinids/15.1.112. [DOI] [PubMed] [Google Scholar]
  30. Muñoz R., Dowson C. G., Daniels M., Coffey T. J., Martin C., Hakenbeck R., Spratt B. G. Genetics of resistance to third-generation cephalosporins in clinical isolates of Streptococcus pneumoniae. Mol Microbiol. 1992 Sep;6(17):2461–2465. doi: 10.1111/j.1365-2958.1992.tb01422.x. [DOI] [PubMed] [Google Scholar]
  31. Nath S. K., Foster G. A., Mandell L. A., Rotstein C. Antimicrobial activity of ceftriaxone versus cefotaxime: negative effect of serum albumin binding of ceftriaxone. J Antimicrob Chemother. 1994 Jun;33(6):1239–1243. doi: 10.1093/jac/33.6.1239. [DOI] [PubMed] [Google Scholar]
  32. Ortqvist A., Hedlund J., Grillner L., Jalonen E., Kallings I., Leinonen M., Kalin M. Aetiology, outcome and prognostic factors in community-acquired pneumonia requiring hospitalization. Eur Respir J. 1990 Nov;3(10):1105–1113. [PubMed] [Google Scholar]
  33. Pallares R., Liñares J., Vadillo M., Cabellos C., Manresa F., Viladrich P. F., Martin R., Gudiol F. Resistance to penicillin and cephalosporin and mortality from severe pneumococcal pneumonia in Barcelona, Spain. N Engl J Med. 1995 Aug 24;333(8):474–480. doi: 10.1056/NEJM199508243330802. [DOI] [PubMed] [Google Scholar]
  34. Pankuch G. A., Visalli M. A., Jacobs M. R., Appelbaum P. C. Activities of oral and parenteral agents against penicillin-susceptible and -resistant pneumococci. Antimicrob Agents Chemother. 1995 Jul;39(7):1499–1504. doi: 10.1128/aac.39.7.1499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Patel I. H., Kaplan S. A. Pharmacokinetic profile of ceftriaxone in man. Am J Med. 1984 Oct 19;77(4C):17–25. [PubMed] [Google Scholar]
  36. Scaglione F., Raichi M., Fraschini F. Serum protein binding and extravascular diffusion of methoxyimino cephalosporins. Time courses of free and total concentrations of cefotaxime and ceftriaxone in serum and pleural exudate. J Antimicrob Chemother. 1990 Sep;26 (Suppl A):1–10. doi: 10.1093/jac/26.suppl_a.1. [DOI] [PubMed] [Google Scholar]
  37. Smith A. M., Klugman K. P. Alterations in penicillin-binding protein 2B from penicillin-resistant wild-type strains of Streptococcus pneumoniae. Antimicrob Agents Chemother. 1995 Apr;39(4):859–867. doi: 10.1128/aac.39.4.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tomasz A. The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Annu Rev Microbiol. 1979;33:113–137. doi: 10.1146/annurev.mi.33.100179.000553. [DOI] [PubMed] [Google Scholar]
  39. Williamson R., Tomasz A. Inhibition of cell wall synthesis and acylation of the penicillin binding proteins during prolonged exposure of growing Streptococcus pneumoniae to benzylpenicillin. Eur J Biochem. 1985 Sep 16;151(3):475–483. doi: 10.1111/j.1432-1033.1985.tb09126.x. [DOI] [PubMed] [Google Scholar]
  40. Wright R. B., Makover S. D., Telep E. Ro 13-9904: affinity for penicillin binding proteins and effect on cell wall synthesis. J Antibiot (Tokyo) 1981 May;34(5):590–595. doi: 10.7164/antibiotics.34.590. [DOI] [PubMed] [Google Scholar]
  41. Yuk J. H., Nightingale C. H., Quintiliani R. Clinical pharmacokinetics of ceftriaxone. Clin Pharmacokinet. 1989 Oct;17(4):223–235. doi: 10.2165/00003088-198917040-00002. [DOI] [PubMed] [Google Scholar]
  42. Zighelboim S., Tomasz A. Penicillin-binding proteins of multiply antibiotic-resistant South African strains of Streptococcus pneumoniae. Antimicrob Agents Chemother. 1980 Mar;17(3):434–442. doi: 10.1128/aac.17.3.434. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES