Abstract
We evaluated the prevalence of impermeability as a mechanism associated with resistance against beta-lactam antibiotics in members of the family Enterobacteriaceae. During a 1-year period, 80 strains were selected from 3,110 routinely isolated strains according to their noticeable cross-resistance pattern to cephalosporins. They were tested for (i) outer membrane nonspecific porins involved in the entry of small hydrophilic molecules; (ii) the MICs of cefepime, cefotaxime, imipenem, and moxalactam; and (iii) beta-lactamase production. Immunological investigations using specific probes showed that 23 of 80 strains presented an alteration of the porin content, most of them expressing an additional resistance mechanism. The prevalence of this porin-deficient phenotype is especially high in Enterobacter aerogenes and concerns 6.4% of the clinical isolates.
Full Text
The Full Text of this article is available as a PDF (749.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker K., Mackman N., Holland I. B. Genetics and biochemistry of the assembly of proteins into the outer membrane of E. coli. Prog Biophys Mol Biol. 1987;49(2-3):89–115. doi: 10.1016/0079-6107(87)90010-1. [DOI] [PubMed] [Google Scholar]
- Bergogne-Bérézin E., Decré D., Joly-Guillou M. L. Opportunistic nosocomial multiply resistant bacterial infections--their treatment and prevention. J Antimicrob Chemother. 1993 Jul;32 (Suppl A):39–47. doi: 10.1093/jac/32.suppl_a.39. [DOI] [PubMed] [Google Scholar]
- Bush K., Jacoby G. A., Medeiros A. A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995 Jun;39(6):1211–1233. doi: 10.1128/aac.39.6.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bush K., Tanaka S. K., Bonner D. P., Sykes R. B. Resistance caused by decreased penetration of beta-lactam antibiotics into Enterobacter cloacae. Antimicrob Agents Chemother. 1985 Apr;27(4):555–560. doi: 10.1128/aac.27.4.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chong Y., Lee K., Kwon O. H. In-vitro activities of cefepime against Enterobacter cloacae, Serratia marcescens, Pseudomonas aeruginosa and other aerobic gram-negative bacilli. J Antimicrob Chemother. 1993 Nov;32 (Suppl B):21–29. doi: 10.1093/jac/32.suppl_b.21. [DOI] [PubMed] [Google Scholar]
- Chow J. W., Shlaes D. M. Imipenem resistance associated with the loss of a 40 kDa outer membrane protein in Enterobacter aerogenes. J Antimicrob Chemother. 1991 Oct;28(4):499–504. doi: 10.1093/jac/28.4.499. [DOI] [PubMed] [Google Scholar]
- Cornaglia G., Russell K., Satta G., Fontana R. Relative importances of outer membrane permeability and group 1 beta-lactamase as determinants of meropenem and imipenem activities against Enterobacter cloacae. Antimicrob Agents Chemother. 1995 Feb;39(2):350–355. doi: 10.1128/aac.39.2.350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies J. Inactivation of antibiotics and the dissemination of resistance genes. Science. 1994 Apr 15;264(5157):375–382. doi: 10.1126/science.8153624. [DOI] [PubMed] [Google Scholar]
- Ehrhardt A. F., Sanders C. C. beta-Lactam resistance amongst Enterobacter species. J Antimicrob Chemother. 1993 Nov;32 (Suppl B):1–11. doi: 10.1093/jac/32.suppl_b.1. [DOI] [PubMed] [Google Scholar]
- Emori T. G., Gaynes R. P. An overview of nosocomial infections, including the role of the microbiology laboratory. Clin Microbiol Rev. 1993 Oct;6(4):428–442. doi: 10.1128/cmr.6.4.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Georghiou P. R., Hamill R. J., Wright C. E., Versalovic J., Koeuth T., Watson D. A., Lupski J. R. Molecular epidemiology of infections due to Enterobacter aerogenes: identification of hospital outbreak-associated strains by molecular techniques. Clin Infect Dis. 1995 Jan;20(1):84–94. doi: 10.1093/clinids/20.1.84. [DOI] [PubMed] [Google Scholar]
- Gibbons A. Exploring new strategies to fight drug-resistant microbes. Science. 1992 Aug 21;257(5073):1036–1038. doi: 10.1126/science.257.5073.1036. [DOI] [PubMed] [Google Scholar]
- Grassi G. G., Grassi C. Cefepime: overview of activity in vitro and in vivo. J Antimicrob Chemother. 1993 Nov;32 (Suppl B):87–94. doi: 10.1093/jac/32.suppl_b.87. [DOI] [PubMed] [Google Scholar]
- Hardin T. C., Jennings T. S. Cefepime. Pharmacotherapy. 1994 Nov-Dec;14(6):657–668. [PubMed] [Google Scholar]
- Hopkins J. M., Towner K. J. Enhanced resistance to cefotaxime and imipenem associated with outer membrane protein alterations in Enterobacter aerogenes. J Antimicrob Chemother. 1990 Jan;25(1):49–55. doi: 10.1093/jac/25.1.49. [DOI] [PubMed] [Google Scholar]
- Huber T. W., Thomas J. S. Detection of resistance due to inducible beta-lactamase in Enterobacter aerogenes and Enterobacter cloacae. J Clin Microbiol. 1994 Oct;32(10):2481–2486. doi: 10.1128/jcm.32.10.2481-2486.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jeanteur D., Lakey J. H., Pattus F. The bacterial porin superfamily: sequence alignment and structure prediction. Mol Microbiol. 1991 Sep;5(9):2153–2164. doi: 10.1111/j.1365-2958.1991.tb02145.x. [DOI] [PubMed] [Google Scholar]
- Lee E. H., Nicolas M. H., Kitzis M. D., Pialoux G., Collatz E., Gutmann L. Association of two resistance mechanisms in a clinical isolate of Enterobacter cloacae with high-level resistance to imipenem. Antimicrob Agents Chemother. 1991 Jun;35(6):1093–1098. doi: 10.1128/aac.35.6.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leying H., Cullmann W., Dick W. Carbapenem resistance in Enterobacter aerogenes is due to lipopolysaccharide alterations. Chemotherapy. 1991;37(2):106–113. doi: 10.1159/000238841. [DOI] [PubMed] [Google Scholar]
- Lindh E., Dornbusch K., Jalakas K., Forsgren A. Antibiotic susceptibility and beta-lactamase production in clinical isolates of Enterobacter spp. APMIS. 1990 May;98(5):462–470. [PubMed] [Google Scholar]
- Malléa M., Simonet V., Lee E. H., Gervier R., Collatz E., Gutmann L., Pagès J. M. Biological and immunological comparisons of Enterobacter cloacae and Escherichia coli porins. FEMS Microbiol Lett. 1995 Jun 15;129(2-3):273–279. doi: 10.1111/j.1574-6968.1995.tb07592.x. [DOI] [PubMed] [Google Scholar]
- Mellencamp M. A., Roccaforte J. S., Preheim L. C., Sanders C. C., Anene C. A., Bittner M. J. Isolation of Enterobacter aerogenes susceptible to beta-lactam antibiotics despite high level beta-lactamase production. Eur J Clin Microbiol Infect Dis. 1990 Nov;9(11):827–830. doi: 10.1007/BF01967384. [DOI] [PubMed] [Google Scholar]
- Murray P. R., Cantrell H. F., Lankford R. B. Multicenter evaluation of the in vitro activity of piperacillin-tazobactam compared with eleven selected beta-lactam antibiotics and ciprofloxacin against more than 42,000 aerobic gram-positive and gram-negative bacteria. In Vitro Susceptibility Surveillance Group. Diagn Microbiol Infect Dis. 1994 Jun;19(2):111–120. doi: 10.1016/0732-8893(94)90121-x. [DOI] [PubMed] [Google Scholar]
- Neuwirth C., Siebor E., Lopez J., Pechinot A., Kazmierczak A. Outbreak of TEM-24-producing Enterobacter aerogenes in an intensive care unit and dissemination of the extended-spectrum beta-lactamase to other members of the family enterobacteriaceae. J Clin Microbiol. 1996 Jan;34(1):76–79. doi: 10.1128/jcm.34.1.76-79.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nikaido H., Liu W., Rosenberg E. Y. Outer membrane permeability and beta-lactamase stability of dipolar ionic cephalosporins containing methoxyimino substituents. Antimicrob Agents Chemother. 1990 Feb;34(2):337–342. doi: 10.1128/aac.34.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nikaido H. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob Agents Chemother. 1989 Nov;33(11):1831–1836. doi: 10.1128/aac.33.11.1831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nikaido H. Porins and specific diffusion channels in bacterial outer membranes. J Biol Chem. 1994 Feb 11;269(6):3905–3908. [PubMed] [Google Scholar]
- Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science. 1994 Apr 15;264(5157):382–388. doi: 10.1126/science.8153625. [DOI] [PubMed] [Google Scholar]
- Nordmann P., Mariotte S., Naas T., Labia R., Nicolas M. H. Biochemical properties of a carbapenem-hydrolyzing beta-lactamase from Enterobacter cloacae and cloning of the gene into Escherichia coli. Antimicrob Agents Chemother. 1993 May;37(5):939–946. doi: 10.1128/aac.37.5.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer S. M., Kang S. L., Cappelletty D. M., Rybak M. J. Bactericidal killing activities of cefepime, ceftazidime, cefotaxime, and ceftriaxone against Staphylococcus aureus and beta-lactamase-producing strains of Enterobacter aerogenes and Klebsiella pneumoniae in an in vitro infection model. Antimicrob Agents Chemother. 1995 Aug;39(8):1764–1771. doi: 10.1128/aac.39.8.1764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raimondi A., Traverso A., Nikaido H. Imipenem- and meropenem-resistant mutants of Enterobacter cloacae and Proteus rettgeri lack porins. Antimicrob Agents Chemother. 1991 Jun;35(6):1174–1180. doi: 10.1128/aac.35.6.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simonet V., Mallea M., Fourel D., Bolla J. M., Pages J. M. Crucial domains are conserved in Enterobacteriaceae porins. FEMS Microbiol Lett. 1996 Feb 1;136(1):91–97. doi: 10.1111/j.1574-6968.1996.tb08030.x. [DOI] [PubMed] [Google Scholar]
- Sirot D. L., Goldstein F. W., Soussy C. J., Courtieu A. L., Husson M. O., Lemozy J., Meyran M., Morel C., Perez R., Quentin-Noury C. Resistance to cefotaxime and seven other beta-lactams in members of the family Enterobacteriaceae: a 3-year survey in France. Antimicrob Agents Chemother. 1992 Aug;36(8):1677–1681. doi: 10.1128/aac.36.8.1677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spratt B. G. Resistance to antibiotics mediated by target alterations. Science. 1994 Apr 15;264(5157):388–393. doi: 10.1126/science.8153626. [DOI] [PubMed] [Google Scholar]
- Steffee C. H., Wasilauskas B. L. Beta-lactamase expression and cross-resistance to beta-lactam antibiotics in a nosocomial population of Enterobacter. Chemotherapy. 1992;38(5):291–296. doi: 10.1159/000239016. [DOI] [PubMed] [Google Scholar]
- Thornsberry C. Trends in antimicrobial resistance among today's bacterial pathogens. Pharmacotherapy. 1995 Jan-Feb;15(1 Pt 2):3S–8S. [PubMed] [Google Scholar]
- Tzouvelekis L. S., Tzelepi E., Kaufmann M. E., Mentis A. F. Consecutive mutations leading to the emergence in vivo of imipenem resistance in a clinical strain of Enterobacter aerogenes. J Med Microbiol. 1994 Jun;40(6):403–407. doi: 10.1099/00222615-40-6-403. [DOI] [PubMed] [Google Scholar]
- Tzouvelekis L. S., Tzelepi E., Mentis A. F., Vatopoulos A. C., Tsakris A. Imipenem resistance in Enterobacter aerogenes is associated with derepression of chromosomal cephalosporinases and impaired permeability. FEMS Microbiol Lett. 1992 Aug 15;74(2-3):195–199. doi: 10.1016/0378-1097(92)90428-q. [DOI] [PubMed] [Google Scholar]
- de Champs C., Henquell C., Guelon D., Sirot D., Gazuy N., Sirot J. Clinical and bacteriological study of nosocomial infections due to Enterobacter aerogenes resistant to imipenem. J Clin Microbiol. 1993 Jan;31(1):123–127. doi: 10.1128/jcm.31.1.123-127.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Champs C., Sirot D., Chanal C., Poupart M. C., Dumas M. P., Sirot J. Concomitant dissemination of three extended-spectrum beta-lactamases among different Enterobacteriaceae isolated in a French hospital. J Antimicrob Chemother. 1991 Apr;27(4):441–457. doi: 10.1093/jac/27.4.441. [DOI] [PubMed] [Google Scholar]