Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Dec;40(12):2865–2873. doi: 10.1128/aac.40.12.2865

Correlation of trimethoprim and brodimoprim physicochemical and lipid membrane interaction properties with their accumulation in human neutrophils.

M Fresta 1, P M Furneri 1, E Mezzasalma 1, V M Nicolosi 1, G Puglisi 1
PMCID: PMC163637  PMID: 9124856

Abstract

Dipalmitoylphosphatidylcholine vesicles were used as a biological membrane model to investigate the interaction and the permeation properties of trimethoprim and brodimoprim as a function of drug protonation. The drug-membrane interaction was studied by differential scanning calorimetry. Both drugs interacted with the hydrophilic phospholipid head groups when in a protonated form. An experiment on the permeation of the two drugs through dipalmitoylphosphatidylcholine biomembranes showed higher diffusion rate constants when the two drugs were in the uncharged form; lowering of the pH (formation of protonated species) caused a reduction of permeation. Drug uptake by human neutrophil cells was also investigated. Both drugs may accumulate within neutrophils; however, brodimoprim does so to a greater extent. This accumulation is probably due to a pH gradient driving force, which allows the two drugs to move easily from the extracellular medium (pH approximately 7.3) into the internal cell compartments (acid pH). Once protonated, both drugs are less able to permeate and can be trapped by the neutrophils. This investigation showed the importance of the physicochemical properties of brodimoprim and trimethoprim in determining drug accumulation and membrane permeation pathways.

Full Text

The Full Text of this article is available as a PDF (369.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amyes S. G. Comparative antibacterial spectrum of trimethoprim and brodimoprim. J Chemother. 1993 Dec;5(6):417–421. [PubMed] [Google Scholar]
  2. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  3. Baccanari D. P., Daluge S., King R. W. Inhibition of dihydrofolate reductase: effect of reduced nicotinamide adenine dinucleotide phosphate on the selectivity and affinity of diaminobenzylpyrimidines. Biochemistry. 1982 Sep 28;21(20):5068–5075. doi: 10.1021/bi00263a034. [DOI] [PubMed] [Google Scholar]
  4. Baccanari D. P., Kuyper L. F. Basis of selectivity of antibacterial diaminopyrimidines. J Chemother. 1993 Dec;5(6):393–399. [PubMed] [Google Scholar]
  5. Bowden K., Hall A. D., Birdsall B., Feeney J., Roberts G. C. Interactions between inhibitors of dihydrofolate reductase. Biochem J. 1989 Mar 1;258(2):335–342. doi: 10.1042/bj2580335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bowden K., Harris N. V., Watson C. A. Structure-activity relationships of dihydrofolate reductase inhibitors. J Chemother. 1993 Dec;5(6):377–388. [PubMed] [Google Scholar]
  7. Braunsteiner A. R., Finsinger F. Brodimoprim: therapeutic efficacy and safety in the treatment of bacterial infections. J Chemother. 1993 Dec;5(6):507–511. [PubMed] [Google Scholar]
  8. Burdeska A., Ott M., Bannwarth W., Then R. L. Identical genes for trimethoprim-resistant dihydrofolate reductase from Staphylococcus aureus in Australia and central Europe. FEBS Lett. 1990 Jun 18;266(1-2):159–162. doi: 10.1016/0014-5793(90)81529-w. [DOI] [PubMed] [Google Scholar]
  9. Bøyum A. Isolation of lymphocytes, granulocytes and macrophages. Scand J Immunol. 1976 Jun;Suppl 5:9–15. [PubMed] [Google Scholar]
  10. Careddu P., Bellosta C., Tonelli P., Boccazzi A. Efficacy and tolerability of brodimoprim in pediatric infections. J Chemother. 1993 Dec;5(6):543–545. [PubMed] [Google Scholar]
  11. Chapman J. S., Georgopapadakou N. H. Routes of quinolone permeation in Escherichia coli. Antimicrob Agents Chemother. 1988 Apr;32(4):438–442. doi: 10.1128/aac.32.4.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Climax J., Lenehan T. J., Lambe R., Kenny M., Caffrey E., Darragh A. Interaction of antimicrobial agents with human peripheral blood leucocytes: uptake and intracellular localization of certain sulphonamides and trimethoprims. J Antimicrob Chemother. 1986 Apr;17(4):489–498. doi: 10.1093/jac/17.4.489. [DOI] [PubMed] [Google Scholar]
  13. Darrell J. H., Garrod L. P., Waterworth P. M. Trimethoprim: laboratory and clinical studies. J Clin Pathol. 1968 Mar;21(2):202–209. doi: 10.1136/jcp.21.2.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Desai S. J., Simonelli A. P., Higuchi W. I. Investigation of factors influencing release of solid drug dispersed in inert matrices. J Pharm Sci. 1965 Oct;54(10):1459–1464. doi: 10.1002/jps.2600541012. [DOI] [PubMed] [Google Scholar]
  15. Edman J. C., Edman U., Cao M., Lundgren B., Kovacs J. A., Santi D. V. Isolation and expression of the Pneumocystis carinii dihydrofolate reductase gene. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8625–8629. doi: 10.1073/pnas.86.22.8625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Estep T. N., Mountcastle D. B., Barenholz Y., Biltonen R. L., Thompson T. E. Thermal behavior of synthetic sphingomyelin-cholesterol dispersions. Biochemistry. 1979 May 15;18(10):2112–2117. doi: 10.1021/bi00577a042. [DOI] [PubMed] [Google Scholar]
  17. Feeney J. NMR studies of interactions of ligands with dihydrofolate reductase. Biochem Pharmacol. 1990 Jul 1;40(1):141–152. doi: 10.1016/0006-2952(90)90189-r. [DOI] [PubMed] [Google Scholar]
  18. Fling M. E., Kopf J., Richards C. A. Nucleotide sequence of the dihydrofolate reductase gene of Saccharomyces cerevisiae. Gene. 1988 Mar 31;63(2):165–174. doi: 10.1016/0378-1119(88)90522-7. [DOI] [PubMed] [Google Scholar]
  19. Gmünder F. K., Seger R. A. Chronic granulomatous disease: mode of action of sulfamethoxazole/trimethoprim. Pediatr Res. 1981 Dec;15(12):1533–1537. doi: 10.1203/00006450-198112000-00017. [DOI] [PubMed] [Google Scholar]
  20. Hancock R. E., Raffle V. J., Nicas T. I. Involvement of the outer membrane in gentamicin and streptomycin uptake and killing in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1981 May;19(5):777–785. doi: 10.1128/aac.19.5.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hirai K., Aoyama H., Irikura T., Iyobe S., Mitsuhashi S. Differences in susceptibility to quinolones of outer membrane mutants of Salmonella typhimurium and Escherichia coli. Antimicrob Agents Chemother. 1986 Mar;29(3):535–538. doi: 10.1128/aac.29.3.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ivanetich K. M., Santi D. V. Bifunctional thymidylate synthase-dihydrofolate reductase in protozoa. FASEB J. 1990 Apr 1;4(6):1591–1597. doi: 10.1096/fasebj.4.6.2180768. [DOI] [PubMed] [Google Scholar]
  23. Jaffe A., Chabbert Y. A., Semonin O. Role of porin proteins OmpF and OmpC in the permeation of beta-lactams. Antimicrob Agents Chemother. 1982 Dec;22(6):942–948. doi: 10.1128/aac.22.6.942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Johnson J. D., Hand W. L., Francis J. B., King-Thompson N., Corwin R. W. Antibiotic uptake by alveolar macrophages. J Lab Clin Med. 1980 Mar;95(3):429–439. [PubMed] [Google Scholar]
  25. King R. D., Muggleton S., Lewis R. A., Sternberg M. J. Drug design by machine learning: the use of inductive logic programming to model the structure-activity relationships of trimethoprim analogues binding to dihydrofolate reductase. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11322–11326. doi: 10.1073/pnas.89.23.11322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lyon B. R., May J. W., Skurray R. A. Analysis of plasmids in nosocomial strains of multiple-antibiotic-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1983 Jun;23(6):817–826. doi: 10.1128/aac.23.6.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Matthews D. A., Bolin J. T., Burridge J. M., Filman D. J., Volz K. W., Kraut J. Dihydrofolate reductase. The stereochemistry of inhibitor selectivity. J Biol Chem. 1985 Jan 10;260(1):392–399. [PubMed] [Google Scholar]
  28. Moulder J. W. Comparative biology of intracellular parasitism. Microbiol Rev. 1985 Sep;49(3):298–337. doi: 10.1128/mr.49.3.298-337.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nikaido H., Thanassi D. G. Penetration of lipophilic agents with multiple protonation sites into bacterial cells: tetracyclines and fluoroquinolones as examples. Antimicrob Agents Chemother. 1993 Jul;37(7):1393–1399. doi: 10.1128/aac.37.7.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nyffenegger R., Riebenfeld D., Bandau K. H., Nouri M. E., Schirmböck U., Streppel M. A multicenter comparative study of brodimoprim and amoxicillin therapy in the treatment of tonsillopharyngitis in adults. J Chemother. 1993 Dec;5(6):512–516. [PubMed] [Google Scholar]
  31. O'Leary T. J., Ross P. D., Lieber M. R., Levin I. W. Effects of cyclosporine A on biomembranes. Vibrational spectroscopic, calorimetric and hemolysis studies. Biophys J. 1986 Apr;49(4):795–801. doi: 10.1016/S0006-3495(86)83707-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ohemeng K. A., Roth B. Receptor-based design of novel dihydrofolate reductase inhibitors: benzimidazole and indole derivatives. J Med Chem. 1991 Apr;34(4):1383–1394. doi: 10.1021/jm00108a022. [DOI] [PubMed] [Google Scholar]
  33. Ohkuma S., Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3327–3331. doi: 10.1073/pnas.75.7.3327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Papahadjopoulos D., Jacobson K., Poste G., Shepherd G. Effects of local anesthetics on membrane properties. I. Changes in the fluidity of phospholipid bilayers. Biochim Biophys Acta. 1975 Jul 18;394(4):504–519. doi: 10.1016/0005-2736(75)90137-6. [DOI] [PubMed] [Google Scholar]
  35. Puglisi G., Fresta M., La Rosa C., Ventura C. A., Panico A. M., Mazzone G. Liposomes as a potential drug carrier for citicoline (CDP-choline) and the effect of formulation conditions on encapsulation efficiency. Pharmazie. 1992 Mar;47(3):211–215. [PubMed] [Google Scholar]
  36. Roos D. S. Primary structure of the dihydrofolate reductase-thymidylate synthase gene from Toxoplasma gondii. J Biol Chem. 1993 Mar 25;268(9):6269–6280. [PubMed] [Google Scholar]
  37. Roth B., Baccanari D. P., Sigel C. W., Hubbell J. P., Eaddy J., Kao J. C., Grace M. E., Rauckman B. S. 2,4-Diamino-5-benzylpyrimidines and analogues as antibacterial agents. 9. Lipophilic trimethoprim analogues as antigonococcal agents. J Med Chem. 1988 Jan;31(1):122–129. doi: 10.1021/jm00396a018. [DOI] [PubMed] [Google Scholar]
  38. Rubin R. H., Swartz M. N. Trimethoprim-sulfamethoxazole. N Engl J Med. 1980 Aug 21;303(8):426–432. doi: 10.1056/NEJM198008213030804. [DOI] [PubMed] [Google Scholar]
  39. Segal A. W., Geisow M., Garcia R., Harper A., Miller R. The respiratory burst of phagocytic cells is associated with a rise in vacuolar pH. Nature. 1981 Apr 2;290(5805):406–409. doi: 10.1038/290406a0. [DOI] [PubMed] [Google Scholar]
  40. Selassie C. D., Li R. L., Poe M., Hansch C. On the optimization of hydrophobic and hydrophilic substituent interactions of 2,4-diamino-5-(substituted-benzyl)pyrimidines with dihydrofolate reductase. J Med Chem. 1991 Jan;34(1):46–54. doi: 10.1021/jm00105a008. [DOI] [PubMed] [Google Scholar]
  41. Then R. L., Böhni E., Angehrn P., Plozza-Nottebrock H., Stoeckel K. New analogs of trimethoprim. Rev Infect Dis. 1982 Mar-Apr;4(2):372–377. doi: 10.1093/clinids/4.2.372. [DOI] [PubMed] [Google Scholar]
  42. Then R. L., Hermann F. Properties of brodimoprim as an inhibitor of dihydrofolate reductases. Chemotherapy. 1984;30(1):18–25. doi: 10.1159/000238239. [DOI] [PubMed] [Google Scholar]
  43. Trimethoprim resistance; epidemiology and molecular aspects. J Med Microbiol. 1990 Jan;31(1):1–19. doi: 10.1099/00222615-31-1-1. [DOI] [PubMed] [Google Scholar]
  44. Tulkens P. M. Intracellular distribution and activity of antibiotics. Eur J Clin Microbiol Infect Dis. 1991 Feb;10(2):100–106. doi: 10.1007/BF01964420. [DOI] [PubMed] [Google Scholar]
  45. Wüst J., Schwarzenbach J. Activity of brodimoprim and metioprim alone and in combination with sulfonamides against anaerobic bacteria. Antimicrob Agents Chemother. 1983 Mar;23(3):490–492. doi: 10.1128/aac.23.3.490. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES