Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Dec;40(12):2894–2897. doi: 10.1128/aac.40.12.2894

In vivo oral efficacy of levofloxacin for treatment of systemic Pseudomonas aeruginosa infections in a murine model of septicemia.

S K Yagel 1, J F Barrett 1, D J Amaratunga 1, M B Frosco 1
PMCID: PMC163644  PMID: 9124863

Abstract

The in vivo efficacies of levofloxacin and ciprofloxacin in lethal, systemic Pseudomonas aeruginosa infections in mice were compared. MICs of levofloxacin and ciprofloxacin ranged from 0.5 to 2.0 micrograms/ml and from 0.12 to 1.0 microgram/ml respectively. Infecting doses ranged from 5.0 x 10(1) to 3.2 x 10(3) CFU per mouse, depending on the isolate. Test fluoroquinolones were administered orally at 1 h (single dose) or at 1 and 3 h (divided dose) postinfection, with 10 infected mice used for each of six concentrations of each fluoroquinolone tested (1 to 40 mg/kg of body weight) in each dosing regimen. Whether given in a single or a divided dose, the total daily dose was the same for each fluoroquinolone. For mice treated 1 h postinfection with levofloxacin and ciprofloxacin, the effective doses for 50% of the infected mice ranged from 2.09 to 13.80 mg/kg and from 2.34 to 11.22 mg/kg, respectively, and for those treated 1 and 3 h postinfection, the effective doses for 50% of the infected mice ranged from 3.71 to 16.98 mg/kg and from 2.95 to 13.18 mg/kg, respectively. Although the potency varied for both levofloxacin and ciprofloxacin among all strains of P. aeruginosa tested, there were small differences within the same strain for levofloxacin and ciprofloxacin when given in the same dosing regimen. Levofloxacin proved nearly as effective as ciprofloxacin against a systemic P. aeruginosa infection in mice.

Full Text

The Full Text of this article is available as a PDF (181.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burwen D. R., Banerjee S. N., Gaynes R. P. Ceftazidime resistance among selected nosocomial gram-negative bacilli in the United States. National Nosocomial Infections Surveillance System. J Infect Dis. 1994 Dec;170(6):1622–1625. doi: 10.1093/infdis/170.6.1622. [DOI] [PubMed] [Google Scholar]
  2. Chidiac C., Roussel-Delvallez M., Guery B., Beaucaire G. Should Pseudomonas aeruginosa isolates resistant to one of the fluorinated quinolones be tested for the others? Studies with an experimental model of pneumonia. Antimicrob Agents Chemother. 1995 Mar;39(3):677–679. doi: 10.1128/AAC.39.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Davis R., Bryson H. M. Levofloxacin. A review of its antibacterial activity, pharmacokinetics and therapeutic efficacy. Drugs. 1994 Apr;47(4):677–700. doi: 10.2165/00003495-199447040-00008. [DOI] [PubMed] [Google Scholar]
  4. Dudley M. N., Blaser J., Gilbert D., Mayer K. H., Zinner S. H. Combination therapy with ciprofloxacin plus azlocillin against Pseudomonas aeruginosa: effect of simultaneous versus staggered administration in an in vitro model of infection. J Infect Dis. 1991 Sep;164(3):499–506. doi: 10.1093/infdis/164.3.499. [DOI] [PubMed] [Google Scholar]
  5. Fernandes P. B., Swanson R. N., Hardy D. J., Hanson C. W., Coen L., Rasmussen R. R., Chen R. H. Pacidamycins, a novel series of antibiotics with anti-Pseudomonas aeruginosa activity. III. Microbiologic profile. J Antibiot (Tokyo) 1989 Apr;42(4):521–526. doi: 10.7164/antibiotics.42.521. [DOI] [PubMed] [Google Scholar]
  6. Fu K. P., Lafredo S. C., Foleno B., Isaacson D. M., Barrett J. F., Tobia A. J., Rosenthale M. E. In vitro and in vivo antibacterial activities of levofloxacin (l-ofloxacin), an optically active ofloxacin. Antimicrob Agents Chemother. 1992 Apr;36(4):860–866. doi: 10.1128/aac.36.4.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Furuya N., Hirakata Y., Tomono K., Matsumoto T., Tateda K., Kaku M., Yamaguchi K. Mortality rates amongst mice with endogenous septicaemia caused by Pseudomonas aeruginosa isolates from various clinical sources. J Med Microbiol. 1993 Aug;39(2):141–146. doi: 10.1099/00222615-39-2-141. [DOI] [PubMed] [Google Scholar]
  8. Gargallo-Viola D., Esteve M., Llovera S., Roca X., Guinea J. In vitro and in vivo antibacterial activities of E-4497, a new 3-amine-3-methyl-azetidinyl tricyclic fluoroquinolone. Antimicrob Agents Chemother. 1991 Mar;35(3):442–447. doi: 10.1128/aac.35.3.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goto S., Miyazaki S. New quinolones--in vivo antibacterial activity. Prog Drug Res. 1992;38:29–37. [PubMed] [Google Scholar]
  10. Grundmann H., Kropec A., Hartung D., Berner R., Daschner F. Pseudomonas aeruginosa in a neonatal intensive care unit: reservoirs and ecology of the nosocomial pathogen. J Infect Dis. 1993 Oct;168(4):943–947. doi: 10.1093/infdis/168.4.943. [DOI] [PubMed] [Google Scholar]
  11. Klesel N., Geweniger K. H., Koletzki P., Isert D., Limbert M., Markus A., Riess G., Schramm H., Iyer P. Chemotherapeutic activity of levofloxacin (HR 355, DR-3355) against systemic and localized infections in laboratory animals. J Antimicrob Chemother. 1995 Jun;35(6):805–819. doi: 10.1093/jac/35.6.805. [DOI] [PubMed] [Google Scholar]
  12. Makhoul I. R., Merzbach D., Lichtig C., Berant M. Antibiotic treatment of experimental Pseudomonas aeruginosa pneumonia in guinea pigs: comparison of aerosol and systemic administration. J Infect Dis. 1993 Nov;168(5):1296–1299. doi: 10.1093/infdis/168.5.1296. [DOI] [PubMed] [Google Scholar]
  13. Richard P., Le Floch R., Chamoux C., Pannier M., Espaze E., Richet H. Pseudomonas aeruginosa outbreak in a burn unit: role of antimicrobials in the emergence of multiply resistant strains. J Infect Dis. 1994 Aug;170(2):377–383. doi: 10.1093/infdis/170.2.377. [DOI] [PubMed] [Google Scholar]
  14. Römling U., Fiedler B., Bosshammer J., Grothues D., Greipel J., von der Hardt H., Tümmler B. Epidemiology of chronic Pseudomonas aeruginosa infections in cystic fibrosis. J Infect Dis. 1994 Dec;170(6):1616–1621. doi: 10.1093/infdis/170.6.1616. [DOI] [PubMed] [Google Scholar]
  15. Tanaka M., Otsuki M., Une T., Nishino T. In-vitro and in-vivo activity of DR-3355, an optically active isomer of ofloxacin. J Antimicrob Chemother. 1990 Nov;26(5):659–666. doi: 10.1093/jac/26.5.659. [DOI] [PubMed] [Google Scholar]
  16. Walker R. C., Wright A. J. The fluoroquinolones. Mayo Clin Proc. 1991 Dec;66(12):1249–1259. doi: 10.1016/s0025-6196(12)62477-x. [DOI] [PubMed] [Google Scholar]
  17. Wood C. A. Quinolone resistance: a practical perspective. Arch Intern Med. 1993 Jan 11;153(1):120–121. [PubMed] [Google Scholar]
  18. Yoshida T., Muratani T., Iyobe S., Mitsuhashi S. Mechanisms of high-level resistance to quinolones in urinary tract isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1994 Jul;38(7):1466–1469. doi: 10.1128/aac.38.7.1466. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES