Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Jan;41(1):54–59. doi: 10.1128/aac.41.1.54

Antibacterial activity in bovine lactoferrin-derived peptides.

K S Hoek 1, J M Milne 1, P A Grieve 1, D A Dionysius 1, R Smith 1
PMCID: PMC163659  PMID: 8980754

Abstract

Several peptides sharing high sequence homology with lactoferricin B (Lf-cin B) were generated from bovine lactoferrin (Lf) with recombinant chymosin. Two peptides were copurified, one identical to Lf-cin B and another differing from Lf-cin B by the inclusion of a C-terminal alanine (lactoferricin). Two other peptides were copurified from chymosin-hydrolyzed Lf, one differing from Lf-cin B by the inclusion of C-terminal alanyl-leucine and the other being a heterodimer linked by a disulfide bond. These peptides were isolated in a single step from chymosin-hydrolyzed Lf by membrane ion-exchange chromatography and were purified by reverse-phase high-pressure liquid chromatography (HPLC). They were characterized by N-terminal Edman sequencing, mass spectrometry, and antibacterial activity determination. Pure lactoferricin, prepared from pepsin-hydrolyzed Lf, was purified by standard chromatography techniques. This peptide was analyzed against a number of gram-positive and gram-negative bacteria before and after reduction of its disulfide bond or cleavage after its single methionine residue and was found to inhibit the growth of all the test bacteria at a concentration of 8 microM or less. Subfragments of lactoferricin were isolated from reduced and cleaved peptide by reverse-phase HPLC. Subfragment 1 (residues 1 to 10) was active against most of the test microorganisms at concentrations of 10 to 50 microM. Subfragment 2 (residues 11 to 26) was active against only a few microorganisms at concentrations up to 100 microM. These antibacterial studies indicate that the activity of lactoferricin is mainly, but not wholly, due to its N-terminal region.

Full Text

The Full Text of this article is available as a PDF (211.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson B. F., Baker H. M., Norris G. E., Rice D. W., Baker E. N. Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8 A resolution. J Mol Biol. 1989 Oct 20;209(4):711–734. doi: 10.1016/0022-2836(89)90602-5. [DOI] [PubMed] [Google Scholar]
  2. Arnold R. R., Russell J. E., Champion W. J., Brewer M., Gauthier J. J. Bactericidal activity of human lactoferrin: differentiation from the stasis of iron deprivation. Infect Immun. 1982 Mar;35(3):792–799. doi: 10.1128/iai.35.3.792-799.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bellamy W., Takase M., Wakabayashi H., Kawase K., Tomita M. Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J Appl Bacteriol. 1992 Dec;73(6):472–479. doi: 10.1111/j.1365-2672.1992.tb05007.x. [DOI] [PubMed] [Google Scholar]
  4. Bellamy W., Takase M., Yamauchi K., Wakabayashi H., Kawase K., Tomita M. Identification of the bactericidal domain of lactoferrin. Biochim Biophys Acta. 1992 May 22;1121(1-2):130–136. doi: 10.1016/0167-4838(92)90346-f. [DOI] [PubMed] [Google Scholar]
  5. Bellamy W., Wakabayashi H., Takase M., Kawase K., Shimamura S., Tomita M. Killing of Candida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin. Med Microbiol Immunol. 1993 May;182(2):97–105. doi: 10.1007/BF00189377. [DOI] [PubMed] [Google Scholar]
  6. Bennett R. M., Kokocinski T. Lactoferrin turnover in man. Clin Sci (Lond) 1979 Nov;57(5):453–460. doi: 10.1042/cs0570453. [DOI] [PubMed] [Google Scholar]
  7. Brock J. H., Arzabe F., Lampreave F., Piñeiro A. The effect of trypsin on bovine transferrin and lactoferrin. Biochim Biophys Acta. 1976 Sep 28;446(1):214–225. doi: 10.1016/0005-2795(76)90112-4. [DOI] [PubMed] [Google Scholar]
  8. Brock J. H., Piñeiro A., Lampreave F. The effect of trypsin and chymotrypsin on the antibacterial activity of complement, antibodies, and lactoferrin and transferrin in bovine colostrum. Ann Rech Vet. 1978;9(2):287–294. [PubMed] [Google Scholar]
  9. Broxmeyer H. E., Platzer E. Lactoferrin acts on I-A and I-E/C antigen+ subpopulations of mouse peritoneal macrophages in the absence of T lymphocytes and other cell types to inhibit production of granulocyte-macrophage colony stimulatory factors in vitro. J Immunol. 1984 Jul;133(1):306–314. [PubMed] [Google Scholar]
  10. Bullen J. J., Rogers H. J., Leigh L. Iron-binding proteins in milk and resistance to Escherichia coli infection in infants. Br Med J. 1972 Jan 8;1(5792):69–75. doi: 10.1136/bmj.1.5792.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DELFOUR A., JOLLES J., ALAIS C., JOLLES P. CASEINO-GLYCOPEPTIDES: CHARACTERIZATION OF A METHIONINE RESIDUE AND OF THE N-TERMINAL SEQUENCE. Biochem Biophys Res Commun. 1965 May 3;19:452–455. doi: 10.1016/0006-291x(65)90145-2. [DOI] [PubMed] [Google Scholar]
  12. Dionysius D. A., Grieve P. A., Milne J. M. Forms of lactoferrin: their antibacterial effect on enterotoxigenic Escherichia coli. J Dairy Sci. 1993 Sep;76(9):2597–2600. doi: 10.3168/jds.S0022-0302(93)77594-3. [DOI] [PubMed] [Google Scholar]
  13. Ellison R. T., 3rd, Giehl T. J. Killing of gram-negative bacteria by lactoferrin and lysozyme. J Clin Invest. 1991 Oct;88(4):1080–1091. doi: 10.1172/JCI115407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ellison R. T., 3rd, Giehl T. J., LaForce F. M. Damage of the outer membrane of enteric gram-negative bacteria by lactoferrin and transferrin. Infect Immun. 1988 Nov;56(11):2774–2781. doi: 10.1128/iai.56.11.2774-2781.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Galbraith P. R. Effects of lactoferrin on human granulopoiesis in vitro. Clin Invest Med. 1986;9(1):1–5. [PubMed] [Google Scholar]
  16. Hutchens T. W., Henry J. F., Yip T. T. Purification and characterization of intact lactoferrin found in the urine of human milk-fed preterm infants. Clin Chem. 1989 Sep;35(9):1928–1933. [PubMed] [Google Scholar]
  17. Larrick J. W., Hirata M., Shimomoura Y., Yoshida M., Zheng H., Zhong J., Wright S. C. Antimicrobial activity of rabbit CAP18-derived peptides. Antimicrob Agents Chemother. 1993 Dec;37(12):2534–2539. doi: 10.1128/aac.37.12.2534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Law B. A., Reiter B. The isolation and bacteriostatic properties of lactoferrin from bovine milk whey. J Dairy Res. 1977 Oct;44(3):595–599. doi: 10.1017/s0022029900020550. [DOI] [PubMed] [Google Scholar]
  19. Legrand D., Mazurier J., Elass A., Rochard E., Vergoten G., Maes P., Montreuil J., Spik G. Molecular interactions between human lactotransferrin and the phytohemagglutinin-activated human lymphocyte lactotransferrin receptor lie in two loop-containing regions of the N-terminal domain I of human lactotransferrin. Biochemistry. 1992 Sep 29;31(38):9243–9251. doi: 10.1021/bi00153a018. [DOI] [PubMed] [Google Scholar]
  20. Leveugle B., Mazurier J., Legrand D., Mazurier C., Montreuil J., Spik G. Lactotransferrin binding to its platelet receptor inhibits platelet aggregation. Eur J Biochem. 1993 May 1;213(3):1205–1211. doi: 10.1111/j.1432-1033.1993.tb17871.x. [DOI] [PubMed] [Google Scholar]
  21. Mazoyer E., Lévy-Toledano S., Rendu F., Hermant L., Lu H., Fiat A. M., Jollès P., Caen J. KRDS, a new peptide derived from human lactotransferrin, inhibits platelet aggregation and release reaction. Eur J Biochem. 1990 Nov 26;194(1):43–49. doi: 10.1111/j.1432-1033.1990.tb19424.x. [DOI] [PubMed] [Google Scholar]
  22. Nikaido H., Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev. 1985 Mar;49(1):1–32. doi: 10.1128/mr.49.1.1-32.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nonnecke B. J., Smith K. L. Inhibition of mastitic bacteria by bovine milk apo-lactoferrin evaluated by in vitro microassay of bacterial growth. J Dairy Sci. 1984 Mar;67(3):606–613. doi: 10.3168/jds.S0022-0302(84)81345-4. [DOI] [PubMed] [Google Scholar]
  24. Ofek I., Cohen S., Rahmani R., Kabha K., Tamarkin D., Herzig Y., Rubinstein E. Antibacterial synergism of polymyxin B nonapeptide and hydrophobic antibiotics in experimental gram-negative infections in mice. Antimicrob Agents Chemother. 1994 Feb;38(2):374–377. doi: 10.1128/aac.38.2.374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Oram J. D., Reiter B. Inhibition of bacteria by lactoferrin and other iron-chelating agents. Biochim Biophys Acta. 1968 Dec 23;170(2):351–365. doi: 10.1016/0304-4165(68)90015-9. [DOI] [PubMed] [Google Scholar]
  26. Oseas R., Yang H. H., Baehner R. L., Boxer L. A. Lactoferrin: a promoter of polymorphonuclear leukocyte adhesiveness. Blood. 1981 May;57(5):939–945. [PubMed] [Google Scholar]
  27. Pierce A., Colavizza D., Benaissa M., Maes P., Tartar A., Montreuil J., Spik G. Molecular cloning and sequence analysis of bovine lactotransferrin. Eur J Biochem. 1991 Feb 26;196(1):177–184. doi: 10.1111/j.1432-1033.1991.tb15801.x. [DOI] [PubMed] [Google Scholar]
  28. Saito H., Miyakawa H., Tamura Y., Shimamura S., Tomita M. Potent bactericidal activity of bovine lactoferrin hydrolysate produced by heat treatment at acidic pH. J Dairy Sci. 1991 Nov;74(11):3724–3730. doi: 10.3168/jds.S0022-0302(91)78563-9. [DOI] [PubMed] [Google Scholar]
  29. Schröder G., Brandenburg K., Seydel U. Polymyxin B induces transient permeability fluctuations in asymmetric planar lipopolysaccharide/phospholipid bilayers. Biochemistry. 1992 Jan 28;31(3):631–638. doi: 10.1021/bi00118a001. [DOI] [PubMed] [Google Scholar]
  30. Todhunter D., Smith K. L., Hogan J. S. Growth of gram-negative bacteria in dry cow secretion. J Dairy Sci. 1990 Feb;73(2):363–372. doi: 10.3168/jds.S0022-0302(90)78682-1. [DOI] [PubMed] [Google Scholar]
  31. Tomita M., Bellamy W., Takase M., Yamauchi K., Wakabayashi H., Kawase K. Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J Dairy Sci. 1991 Dec;74(12):4137–4142. doi: 10.3168/jds.S0022-0302(91)78608-6. [DOI] [PubMed] [Google Scholar]
  32. Van Snick J. L., Masson P. L., Heremans J. F. The involvement of lactoferrin in the hyposideremia of acute inflammation. J Exp Med. 1974 Oct 1;140(4):1068–1084. doi: 10.1084/jem.140.4.1068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ward P. P., Piddington C. S., Cunningham G. A., Zhou X., Wyatt R. D., Conneely O. M. A system for production of commercial quantities of human lactoferrin: a broad spectrum natural antibiotic. Biotechnology (N Y) 1995 May;13(5):498–503. doi: 10.1038/nbt0595-498. [DOI] [PubMed] [Google Scholar]
  34. Wu G., Ruan C., Drouet L., Caen J. Inhibition effects of KRDS, a peptide derived from lactotransferrin, on platelet function and arterial thrombus formation in dogs. Haemostasis. 1992;22(1):1–6. doi: 10.1159/000216284. [DOI] [PubMed] [Google Scholar]
  35. Yamauchi K., Tomita M., Giehl T. J., Ellison R. T., 3rd Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect Immun. 1993 Feb;61(2):719–728. doi: 10.1128/iai.61.2.719-728.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ziere G. J., Bijsterbosch M. K., van Berkel T. J. Removal of 14 N-terminal amino acids of lactoferrin enhances its affinity for parenchymal liver cells and potentiates the inhibition of beta- very low density lipoprotein binding. J Biol Chem. 1993 Dec 25;268(36):27069–27075. [PubMed] [Google Scholar]
  37. van Snick J. L., Markowetz B., Masson P. L. The ingestion and digestion of human lactoferrin by mouse peritoneal macrophages and the transfer of its iron into ferritin. J Exp Med. 1977 Sep 1;146(3):817–827. doi: 10.1084/jem.146.3.817. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES