Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Jan;41(1):95–100. doi: 10.1128/aac.41.1.95

Synergism between tobramycin and ceftazidime against a resistant Pseudomonas aeruginosa strain, tested in an in vitro pharmacokinetic model.

J G den Hollander 1, A M Horrevorts 1, M L van Goor 1, H A Verbrugh 1, J W Mouton 1
PMCID: PMC163667  PMID: 8980762

Abstract

Synergism between two antibiotics is usually tested by a checkerboard titration technique, or by time-kill methods. Both methods have the disadvantage that synergism is determined at constant concentrations of the antibiotics, which do not reflect reality in vivo. In the present study we determined whether synergism between tobramycin and ceftazidime can be found at declining concentrations below the MIC, and whether change in dosing sequence of the antibiotics would result in differences in killing. Three monotherapy and six combination therapy schedules were tested in an in vitro pharmacokinetic model, using a Pseudomonas aeruginosa resistant to both antibiotics. During all q8h dosing schedules the peak concentration (Cmax) was adjusted to the MIC for the strain of both antibiotics. During all monotherapy regimens bacterial growth was present, while all six combination therapy schedules showed significant killing. At t = 24 h there were no differences between all combination therapy schedules, but at t = 8 h the two combination therapy schedules with administration of tobramycin once daily showed a significantly faster killing. By using the area under the killing curve (AUKC) as a parameter for synergistic killing, simultaneous combination therapy starting with tobramycin once daily was significantly better than all other regimens. We conclude that there is synergism between tobramycin and ceftazidime at declining antibiotic concentrations below the MIC, resulting in a pronounced killing of a resistant Pseudomonas strain. Infections due to resistant Pseudomonas strains could possibly be treated by a synergistic combination of these drugs.

Full Text

The Full Text of this article is available as a PDF (243.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barclay M. L., Begg E. J., Chambers S. T., Boswell D. R. Improved efficacy with nonsimultaneous administration of first doses of gentamicin and ceftazidime in vitro. Antimicrob Agents Chemother. 1995 Jan;39(1):132–136. doi: 10.1128/aac.39.1.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berenbaum M. C. A method for testing for synergy with any number of agents. J Infect Dis. 1978 Feb;137(2):122–130. doi: 10.1093/infdis/137.2.122. [DOI] [PubMed] [Google Scholar]
  3. Blaser J., Stone B. B., Groner M. C., Zinner S. H. Impact of netilmicin regimens on the activities of ceftazidime-netilmicin combinations against Pseudomonas aeruginosa in an in vitro pharmacokinetic model. Antimicrob Agents Chemother. 1985 Jul;28(1):64–68. doi: 10.1128/aac.28.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bush K., Jacoby G. A., Medeiros A. A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995 Jun;39(6):1211–1233. doi: 10.1128/aac.39.6.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chandrasekar P. H., Crane L. R., Bailey E. J. Comparison of the activity of antibiotic combinations in vitro with clinical outcome and resistance emergence in serious infection by Pseudomonas aeruginosa in non-neutropenic patients. J Antimicrob Chemother. 1987 Mar;19(3):321–329. doi: 10.1093/jac/19.3.321. [DOI] [PubMed] [Google Scholar]
  6. Chin N. X., Neu H. C. Synergy of azlocillin with aminoglycosides. J Antimicrob Chemother. 1983 May;11 (Suppl B):33–38. doi: 10.1093/jac/11.suppl_b.33. [DOI] [PubMed] [Google Scholar]
  7. ELION G. B., SINGER S., HITCHINGS G. H. Antagonists of nucleic acid derivatives. VIII. Synergism in combinations of biochemically related antimetabolites. J Biol Chem. 1954 Jun;208(2):477–488. [PubMed] [Google Scholar]
  8. Fantin B., Carbon C. In vivo antibiotic synergism: contribution of animal models. Antimicrob Agents Chemother. 1992 May;36(5):907–912. doi: 10.1128/aac.36.5.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Guggenbichler J. P., Allerberger F., Dierich M. P., Schmitzberger R., Semenitz E. Spaced administration of antibiotic combinations to eliminate pseudomonas from sputum in cystic fibrosis. Lancet. 1988 Sep 24;2(8613):749–750. doi: 10.1016/s0140-6736(88)90226-7. [DOI] [PubMed] [Google Scholar]
  10. Hallander H. O., Dornbusch K., Gezelius L., Jacobson K., Karlsson I. Synergism between aminoglycosides and cephalosporins with antipseudomonal activity: interaction index and killing curve method. Antimicrob Agents Chemother. 1982 Nov;22(5):743–752. doi: 10.1128/aac.22.5.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Horrevorts A. M., Michel M. F., Kerrebijn K. F. Antibiotic interaction: interpretation of fractional inhibitory and fractional bactericidal concentration indices. Eur J Clin Microbiol. 1987 Aug;6(4):502–503. doi: 10.1007/BF02013128. [DOI] [PubMed] [Google Scholar]
  12. Horrevorts A. M., de Ridder C. M., Poot M. C., de Jonge M. J., Degener J. E., Dzoljic-Danilovic G., Michel M. F., Kerrebijn K. F. Chequerboard titrations: the influence of the composition of serial dilutions of antibiotics on the fractional inhibitory concentration index and fractional bactericidal concentration index. J Antimicrob Chemother. 1987 Jan;19(1):119–125. doi: 10.1093/jac/19.1.119. [DOI] [PubMed] [Google Scholar]
  13. Johnson D. E., Thompson B., Calia F. M. Comparative activities of piperacillin, ceftazidime, and amikacin, alone and in all possible combinations, against experimental Pseudomonas aeruginosa infections in neutropenic rats. Antimicrob Agents Chemother. 1985 Dec;28(6):735–739. doi: 10.1128/aac.28.6.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johnson D. E., Thompson B. Efficacy of single-agent therapy with azlocillin, ticarcillin, and amikacin and beta-lactam/amikacin combinations for treatment of Pseudomonas aeruginosa bacteremia in granulocytopenic rats. Am J Med. 1986 May 30;80(5C):53–58. [PubMed] [Google Scholar]
  15. Klastersky J., Cappel R., Daneau D. Clinical significance of in vitro synergism between antibiotics in gram-negative infections. Antimicrob Agents Chemother. 1972 Dec;2(6):470–475. doi: 10.1128/aac.2.6.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Klastersky J., Zinner S. H. Synergistic combinations of antibiotics in gram-negative bacillary infections. Rev Infect Dis. 1982 Mar-Apr;4(2):294–301. doi: 10.1093/clinids/4.2.294. [DOI] [PubMed] [Google Scholar]
  17. König P., Guggenbichler J. P., Semenitz E., Foisner W. Kill kinetics of bacteria under fluctuating concentrations of various antibiotics. II. Description of experiments. Chemotherapy. 1986;32(1):44–58. doi: 10.1159/000238388. [DOI] [PubMed] [Google Scholar]
  18. Lumish R. M., Norden C. W. Therapy of neutropenic rats infected with Pseudomonas aeruginosa. J Infect Dis. 1976 May;133(5):538–547. doi: 10.1093/infdis/133.5.538. [DOI] [PubMed] [Google Scholar]
  19. McGrath B. J., Lamp K. C., Rybak M. J. Pharmacodynamic effects of extended dosing intervals of imipenem alone and in combination with amikacin against Pseudomonas aeruginosa in an in vitro model. Antimicrob Agents Chemother. 1993 Sep;37(9):1931–1937. doi: 10.1128/aac.37.9.1931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mouton J. W., Horrevorts A. M., Mulder P. G., Prens E. P., Michel M. F. Pharmacokinetics of ceftazidime in serum and suction blister fluid during continuous and intermittent infusions in healthy volunteers. Antimicrob Agents Chemother. 1990 Dec;34(12):2307–2311. doi: 10.1128/aac.34.12.2307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mouton J. W., den Hollander J. G., Horrevorts A. M. Emergence of antibiotic resistance amongst Pseudomonas aeruginosa isolates from patients with cystic fibrosis. J Antimicrob Chemother. 1993 Jun;31(6):919–926. doi: 10.1093/jac/31.6.919. [DOI] [PubMed] [Google Scholar]
  22. Mouton J. W., den Hollander J. G. Killing of Pseudomonas aeruginosa during continuous and intermittent infusion of ceftazidime in an in vitro pharmacokinetic model. Antimicrob Agents Chemother. 1994 May;38(5):931–936. doi: 10.1128/aac.38.5.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reyes M. P., Smith F., Lerner A. M. Studies of in vitro synergy between several beta-lactam and aminoglycoside antibiotics against endocarditis strains of Pseudomonas aeruginosa. J Infect. 1984 Mar;8(2):110–117. doi: 10.1016/s0163-4453(84)92385-5. [DOI] [PubMed] [Google Scholar]
  24. Scott R. E., Robson H. G. Synergistic activity of carbenicillin and gentamicin in experimental Pseudomonas bacteremia in neutropenic rats. Antimicrob Agents Chemother. 1976 Oct;10(4):646–651. doi: 10.1128/aac.10.4.646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vergères P., Blaser J. Amikacin, ceftazidime, and flucloxacillin against suspended and adherent Pseudomonas aeruginosa and Staphylococcus epidermidis in an in vitro model of infection. J Infect Dis. 1992 Feb;165(2):281–289. doi: 10.1093/infdis/165.2.281. [DOI] [PubMed] [Google Scholar]
  26. Zinner S. H., Blaser J., Stone B. B., Groner M. C. Use of an in-vitro kinetic model to study antibiotic combinations. J Antimicrob Chemother. 1985 Jan;15 (Suppl A):221–226. doi: 10.1093/jac/15.suppl_a.221. [DOI] [PubMed] [Google Scholar]
  27. van de Klundert J. A., Vliegenthart J. S., van Doorn E., Bongaerts G. P., Molendijk L., Mouton R. P. A simple method for the identification of aminoglycoside-modifying enzymes. J Antimicrob Chemother. 1984 Oct;14(4):339–348. doi: 10.1093/jac/14.4.339. [DOI] [PubMed] [Google Scholar]
  28. van de Klundert J. A., van Gestel M. H., van Doorn E., Mouton R. P. Disc diffusion test for the determination of semi-quantitative substrate profiles of beta-lactamases. J Antimicrob Chemother. 1986 Apr;17(4):471–479. doi: 10.1093/jac/17.4.471. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES