Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Jan;41(1):107–111. doi: 10.1128/aac.41.1.107

Pharmacodynamic effects of antibiotics and antibiotic combinations on growing and nongrowing Staphylococcus epidermidis cells.

E Svensson 1, H Hanberger 1, L E Nilsson 1
PMCID: PMC163669  PMID: 8980764

Abstract

The pharmacodynamic effects of amikacin, imipenem, ofloxacin, rifampin, and vancomycin were studied on the slime-producing, oxacillin-resistant strain Staphylococcus epidermidis ATCC 35984 growing in Mueller Hinton broth or, in order to inhibit growth, incubated in phosphate-buffered saline. The investigated parameters were postantibiotic effect (PAE) and control-related effective regrowth time (CERT), which were determined by bioluminescence assay of bacterial ATP. PAE describes the delayed regrowth after drug removal, and CERT describes the combined effects of initial change in bacterial density during antibiotic exposure and delayed regrowth after drug removal. In growth cultures, PAE and CERT were drug concentration dependent for all antibiotics. The length of the PAE and CERT in the growing cultures were as follows: ofloxacin > rifampin > amikacin > vancomycin > imipenem. Imipenem combined with amikacin and vancomycin, respectively, induced a synergistic effect against growing cultures. In nongrowing cultures rifampin was the only drug that induced strong concentration-dependent effects. The combination of drugs induced no synergistic effects against nongrowing bacteria.

Full Text

The Full Text of this article is available as a PDF (194.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baquero F., Culebras E., Patrón C., Pérez-Díaz J. C., Medrano J. C., Vicente M. F. Postantibiotic effect of imipenem on gram-positive and gram-negative micro-organisms. J Antimicrob Chemother. 1986 Dec;18 (Suppl E):47–59. doi: 10.1093/jac/18.supplement_e.47. [DOI] [PubMed] [Google Scholar]
  2. Brown M. R., Allison D. G., Gilbert P. Resistance of bacterial biofilms to antibiotics: a growth-rate related effect? J Antimicrob Chemother. 1988 Dec;22(6):777–780. doi: 10.1093/jac/22.6.777. [DOI] [PubMed] [Google Scholar]
  3. Eng R. H., Padberg F. T., Smith S. M., Tan E. N., Cherubin C. E. Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria. Antimicrob Agents Chemother. 1991 Sep;35(9):1824–1828. doi: 10.1128/aac.35.9.1824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hanberger H., Nilsson L. E., Kihlström E., Maller R. Postantibiotic effect of beta-lactam antibiotics on Escherichia coli evaluated by bioluminescence assay of bacterial ATP. Antimicrob Agents Chemother. 1990 Jan;34(1):102–106. doi: 10.1128/aac.34.1.102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hanberger H., Svensson E., Nilsson L. E., Nilsson M. Control-related effective regrowth time and post-antibiotic effect of meropenem on gram-negative bacteria studied by bioluminescence and viable counts. J Antimicrob Chemother. 1995 May;35(5):585–592. doi: 10.1093/jac/35.5.585. [DOI] [PubMed] [Google Scholar]
  6. Hanberger H., Svensson E., Nilsson M., Nilsson L. E., Hörnsten E. G., Maller R. Effects of imipenem on Escherichia coli studied using bioluminescence, viable counting and microscopy. J Antimicrob Chemother. 1993 Feb;31(2):245–260. doi: 10.1093/jac/31.2.245. [DOI] [PubMed] [Google Scholar]
  7. Isaksson B., Hanberger H., Maller R., Nilsson L. E., Nilsson M. Synergistic post-antibiotic effect of amikacin and beta-lactam antibiotics on Enterococcus faecalis. J Antimicrob Chemother. 1991 May;27 (Suppl 100):9–14. doi: 10.1093/jac/27.suppl_c.9. [DOI] [PubMed] [Google Scholar]
  8. Kjelleberg S., Albertson N., Flärdh K., Holmquist L., Jouper-Jaan A., Marouga R., Ostling J., Svenblad B., Weichart D. How do non-differentiating bacteria adapt to starvation? Antonie Van Leeuwenhoek. 1993;63(3-4):333–341. doi: 10.1007/BF00871228. [DOI] [PubMed] [Google Scholar]
  9. MacKenzie F. M., Gould I. M., Chapman D. G., Jason D. Comparison of methodologies used in assessing the postantibiotic effect. J Antimicrob Chemother. 1994 Aug;34(2):223–230. doi: 10.1093/jac/34.2.223. [DOI] [PubMed] [Google Scholar]
  10. Nyström T., Flärdh K., Kjelleberg S. Responses to multiple-nutrient starvation in marine Vibrio sp. strain CCUG 15956. J Bacteriol. 1990 Dec;172(12):7085–7097. doi: 10.1128/jb.172.12.7085-7097.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Thore A., Anséhn S., Lundin A., Bergman S. Detection of bacteriuria by luciferase assay of adenosine triphosphate. J Clin Microbiol. 1975 Jan;1(1):1–8. doi: 10.1128/jcm.1.1.1-8.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Tuomanen E. Phenotypic tolerance: the search for beta-lactam antibiotics that kill nongrowing bacteria. Rev Infect Dis. 1986 Jul-Aug;8 (Suppl 3):S279–S291. doi: 10.1093/clinids/8.supplement_3.s279. [DOI] [PubMed] [Google Scholar]
  13. Widmer A. F., Frei R., Rajacic Z., Zimmerli W. Correlation between in vivo and in vitro efficacy of antimicrobial agents against foreign body infections. J Infect Dis. 1990 Jul;162(1):96–102. doi: 10.1093/infdis/162.1.96. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES