Abstract
We have tested whether tetracyclines (TETs) are able to protect mice from lipopolysaccharide (LPS)-induced shock, a cytokine-mediated inflammatory reaction. Mice, injected with a single dose of tetracycline base (TETb; 1.5, 10 and 20 mg/kg of body weight) or doxycycline (DOXY; 1.5 mg/kg), were significantly protected from a lethal intraperitoneal injection of LPS (500 micrograms per mouse). TETs acted in early events triggered in response to LSP; in fact, they were no longer significantly protective if injected more than 1 h after the injection of endotoxin. LPS-treated mice protected by TETs showed a significant inhibition of tumor necrosis factor alpha (TNF-alpha), interleukin-1 alpha (IL-1 alpha), and nitrate secretion in the blood, events that were directly related with the survival. In mice treated with TETs a significant decrease of inducible nitric oxide synthase (iNOS) activity was observed in spleen and peritoneal cells compared with that detected in mice treated with LPS alone. Furthermore, TETs were found to inhibit NO synthesis by peritoneal macrophages stimulated in vitro with LPS. On the contrary, TETs were unable to decrease the ability of the macrophages to synthesize IL-1 alpha and TNF-alpha in vitro. These results indicate that TETs are not able to act directly on the synthesis of these cytokines, but they may modulate other pathways that could in turn be responsible for the inhibition of IL-1 alpha and TNF-alpha synthesis. Altogether, these results indicate that TETs are advantageous candidates for the prophylaxis and treatment of septic shock in mice, having both antimicrobial activity and the ability to inhibit endogenous TNF-alpha, IL-1 alpha, and iNOS, hence, exerting, potent anti-inflammatory effects.
Full Text
The Full Text of this article is available as a PDF (199.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander H. R., Doherty G. M., Buresh C. M., Venzon D. J., Norton J. A. A recombinant human receptor antagonist to interleukin 1 improves survival after lethal endotoxemia in mice. J Exp Med. 1991 Apr 1;173(4):1029–1032. doi: 10.1084/jem.173.4.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alon R., Cahalon L., Hershkoviz R., Elbaz D., Reizis B., Wallach D., Akiyama S. K., Yamada K. M., Lider O. TNF-alpha binds to the N-terminal domain of fibronectin and augments the beta 1-integrin-mediated adhesion of CD4+ T lymphocytes to the glycoprotein. J Immunol. 1994 Feb 1;152(3):1304–1313. [PubMed] [Google Scholar]
- Bauss F., Dröge W., Männel D. N. Tumor necrosis factor mediates endotoxic effects in mice. Infect Immun. 1987 Jul;55(7):1622–1625. doi: 10.1128/iai.55.7.1622-1625.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beutler B., Milsark I. W., Cerami A. C. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science. 1985 Aug 30;229(4716):869–871. doi: 10.1126/science.3895437. [DOI] [PubMed] [Google Scholar]
- Bone R. C. The pathogenesis of sepsis. Ann Intern Med. 1991 Sep 15;115(6):457–469. doi: 10.7326/0003-4819-115-6-457. [DOI] [PubMed] [Google Scholar]
- Breedveld F. C., Dijkmans B. A., Mattie H. Minocycline treatment for rheumatoid arthritis: an open dose finding study. J Rheumatol. 1990 Jan;17(1):43–46. [PubMed] [Google Scholar]
- Cillari E., Arcoleo F., Dieli M., D'Agostino R., Gromo G., Leoni F., Milano S. The macrophage-activating tetrapeptide tuftsin induces nitric oxide synthesis and stimulates murine macrophages to kill Leishmania parasites in vitro. Infect Immun. 1994 Jun;62(6):2649–2652. doi: 10.1128/iai.62.6.2649-2652.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cunha F. Q., Assreuy J., Moss D. W., Rees D., Leal L. M., Moncada S., Carrier M., O'Donnell C. A., Liew F. Y. Differential induction of nitric oxide synthase in various organs of the mouse during endotoxaemia: role of TNF-alpha and IL-1-beta. Immunology. 1994 Feb;81(2):211–215. [PMC free article] [PubMed] [Google Scholar]
- Ding A. H., Nathan C. F., Stuehr D. J. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol. 1988 Oct 1;141(7):2407–2412. [PubMed] [Google Scholar]
- Dornand J., Bouaboula M., d'Angeac A. D., Favero J., Shire D., Casellas P. Contrasting effects of the protein kinase C inhibitor staurosporine on the interleukin-1 and phorbol ester activation pathways in the EL4-6.1 thymoma cell line. J Cell Physiol. 1992 Apr;151(1):71–80. doi: 10.1002/jcp.1041510112. [DOI] [PubMed] [Google Scholar]
- Eierman D. F., Johnson C. E., Haskill J. S. Human monocyte inflammatory mediator gene expression is selectively regulated by adherence substrates. J Immunol. 1989 Mar 15;142(6):1970–1976. [PubMed] [Google Scholar]
- Gilat D., Cahalon L., Hershkoviz R., Lider O. Interplay of T cells and cytokines in the context of enzymatically modified extracellular matrix. Immunol Today. 1996 Jan;17(1):16–20. doi: 10.1016/0167-5699(96)80563-9. [DOI] [PubMed] [Google Scholar]
- Glauser M. P., Zanetti G., Baumgartner J. D., Cohen J. Septic shock: pathogenesis. Lancet. 1991 Sep 21;338(8769):732–736. doi: 10.1016/0140-6736(91)91452-z. [DOI] [PubMed] [Google Scholar]
- Golub L. M., McNamara T. F., D'Angelo G., Greenwald R. A., Ramamurthy N. S. A non-antibacterial chemically-modified tetracycline inhibits mammalian collagenase activity. J Dent Res. 1987 Aug;66(8):1310–1314. doi: 10.1177/00220345870660080401. [DOI] [PubMed] [Google Scholar]
- Golub L. M., Ramamurthy N. S., McNamara T. F., Greenwald R. A., Rifkin B. R. Tetracyclines inhibit connective tissue breakdown: new therapeutic implications for an old family of drugs. Crit Rev Oral Biol Med. 1991;2(3):297–321. doi: 10.1177/10454411910020030201. [DOI] [PubMed] [Google Scholar]
- Golub L. M., Ramamurthy N., McNamara T. F., Gomes B., Wolff M., Casino A., Kapoor A., Zambon J., Ciancio S., Schneir M. Tetracyclines inhibit tissue collagenase activity. A new mechanism in the treatment of periodontal disease. J Periodontal Res. 1984 Nov;19(6):651–655. doi: 10.1111/j.1600-0765.1984.tb01334.x. [DOI] [PubMed] [Google Scholar]
- Keeting P. E., Rifas L., Harris S. A., Colvard D. S., Spelsberg T. C., Peck W. A., Riggs B. L. Evidence for interleukin-1 beta production by cultured normal human osteoblast-like cells. J Bone Miner Res. 1991 Aug;6(8):827–833. doi: 10.1002/jbmr.5650060807. [DOI] [PubMed] [Google Scholar]
- Lamas S., Marsden P. A., Li G. K., Tempst P., Michel T. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6348–6352. doi: 10.1073/pnas.89.14.6348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marcinkiewicz J., Grabowska A., Chain B. Nitric oxide up-regulates the release of inflammatory mediators by mouse macrophages. Eur J Immunol. 1995 Apr;25(4):947–951. doi: 10.1002/eji.1830250414. [DOI] [PubMed] [Google Scholar]
- Mathison J. C., Wolfson E., Ulevitch R. J. Participation of tumor necrosis factor in the mediation of gram negative bacterial lipopolysaccharide-induced injury in rabbits. J Clin Invest. 1988 Jun;81(6):1925–1937. doi: 10.1172/JCI113540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
- Nair S. P., Meghji S., Wilson M., Reddi K., White P., Henderson B. Bacterially induced bone destruction: mechanisms and misconceptions. Infect Immun. 1996 Jul;64(7):2371–2380. doi: 10.1128/iai.64.7.2371-2380.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
- Nava E., Palmer R. M., Moncada S. Inhibition of nitric oxide synthesis in septic shock: how much is beneficial? Lancet. 1991 Dec 21;338(8782-8783):1555–1557. doi: 10.1016/0140-6736(91)92375-c. [DOI] [PubMed] [Google Scholar]
- O'Neill L. A. Interleukin-1 signal transduction. Int J Clin Lab Res. 1995;25(4):169–177. doi: 10.1007/BF02592694. [DOI] [PubMed] [Google Scholar]
- Palmer R. M., Ashton D. S., Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988 Jun 16;333(6174):664–666. doi: 10.1038/333664a0. [DOI] [PubMed] [Google Scholar]
- Petros A., Bennett D., Vallance P. Effect of nitric oxide synthase inhibitors on hypotension in patients with septic shock. Lancet. 1991 Dec 21;338(8782-8783):1557–1558. doi: 10.1016/0140-6736(91)92376-d. [DOI] [PubMed] [Google Scholar]
- Ramamurthy N. S., Vernillo A. T., Greenwald R. A., Lee H. M., Sorsa T., Golub L. M., Rifkin B. R. Reactive oxygen species activate and tetracyclines inhibit rat osteoblast collagenase. J Bone Miner Res. 1993 Oct;8(10):1247–1253. doi: 10.1002/jbmr.5650081013. [DOI] [PubMed] [Google Scholar]
- Rifkin B. R., Vernillo A. T., Golub L. M. Blocking periodontal disease progression by inhibiting tissue-destructive enzymes: a potential therapeutic role for tetracyclines and their chemically-modified analogs. J Periodontol. 1993 Aug;64(8 Suppl):819–827. doi: 10.1902/jop.1993.64.8s.819. [DOI] [PubMed] [Google Scholar]
- Rogy M. A., Auffenberg T., Espat N. J., Philip R., Remick D., Wollenberg G. K., Copeland E. M., 3rd, Moldawer L. L. Human tumor necrosis factor receptor (p55) and interleukin 10 gene transfer in the mouse reduces mortality to lethal endotoxemia and also attenuates local inflammatory responses. J Exp Med. 1995 Jun 1;181(6):2289–2293. doi: 10.1084/jem.181.6.2289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosales C., Juliano R. L. Signal transduction by cell adhesion receptors in leukocytes. J Leukoc Biol. 1995 Feb;57(2):189–198. doi: 10.1002/jlb.57.2.189. [DOI] [PubMed] [Google Scholar]
- Salter M., Knowles R. G., Moncada S. Widespread tissue distribution, species distribution and changes in activity of Ca(2+)-dependent and Ca(2+)-independent nitric oxide synthases. FEBS Lett. 1991 Oct 7;291(1):145–149. doi: 10.1016/0014-5793(91)81123-p. [DOI] [PubMed] [Google Scholar]
- Shapira L., Soskolne W. A., Houri Y., Barak V., Halabi A., Stabholz A. Protection against endotoxic shock and lipopolysaccharide-induced local inflammation by tetracycline: correlation with inhibition of cytokine secretion. Infect Immun. 1996 Mar;64(3):825–828. doi: 10.1128/iai.64.3.825-828.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Zee K. J., Kohno T., Fischer E., Rock C. S., Moldawer L. L., Lowry S. F. Tumor necrosis factor soluble receptors circulate during experimental and clinical inflammation and can protect against excessive tumor necrosis factor alpha in vitro and in vivo. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4845–4849. doi: 10.1073/pnas.89.11.4845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waage A., Espevik T. Interleukin 1 potentiates the lethal effect of tumor necrosis factor alpha/cachectin in mice. J Exp Med. 1988 Jun 1;167(6):1987–1992. doi: 10.1084/jem.167.6.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Webster G. F., Toso S. M., Hegemann L. Inhibition of a model of in vitro granuloma formation by tetracyclines and ciprofloxacin. Involvement of protein kinase C. Arch Dermatol. 1994 Jun;130(6):748–752. [PubMed] [Google Scholar]
- Wright C. E., Rees D. D., Moncada S. Protective and pathological roles of nitric oxide in endotoxin shock. Cardiovasc Res. 1992 Jan;26(1):48–57. doi: 10.1093/cvr/26.1.48. [DOI] [PubMed] [Google Scholar]
- Wright S. D. Multiple receptors for endotoxin. Curr Opin Immunol. 1991 Feb;3(1):83–90. doi: 10.1016/0952-7915(91)90082-c. [DOI] [PubMed] [Google Scholar]
- Xie Q. W., Cho H. J., Calaycay J., Mumford R. A., Swiderek K. M., Lee T. D., Ding A., Troso T., Nathan C. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science. 1992 Apr 10;256(5054):225–228. doi: 10.1126/science.1373522. [DOI] [PubMed] [Google Scholar]
- Zanetti G., Heumann D., Gérain J., Kohler J., Abbet P., Barras C., Lucas R., Glauser M. P., Baumgartner J. D. Cytokine production after intravenous or peritoneal gram-negative bacterial challenge in mice. Comparative protective efficacy of antibodies to tumor necrosis factor-alpha and to lipopolysaccharide. J Immunol. 1992 Mar 15;148(6):1890–1897. [PubMed] [Google Scholar]