Abstract
A series of mercaptoacetic acid thiol esters have been identified as metallo-beta-lactamase inhibitors. Electrospray mass spectrometry (ESMS) has shown that irreversible inhibition of the Bacillus cereus II metallo-beta-lactamase by SB214751, SB214752, and SB213079 was concomitant with a 90-Da increase in mass of the enzyme. Tryptic digestion of the B. cereus II inhibited with SB214751 illustrated that the peptide fragment, containing the only cysteine of the enzyme, had undergone a mass increment of 90 Da. It was further demonstrated that B. cereus II hydrolyzed this type of compound across the thiol ester bond to yield mercaptoacetic acid. Mercaptoacetic acid is the only molecular fragment common to SB214751, SB214752, and SB213079, and free mercaptoacetic acid does not bind covalently to B. cereus II. Therefore, it is concluded that these compounds inhibit B. cereus II by the mechanism-based delivery of mercaptoacetic acid, forming a disulfide linkage with the active sites cysteine (predicted mass shift = +90 Da) under the aerobic conditions of the assay. The different thiol esters examined had a broad range of potencies against the metallo-beta-lactamases tested. For example SB214751, SB214752, and SB213079 all had 50% inhibitory concentrations of < 10 and > 1,000 microM for the Stenotrophomonas maltophilia L-1 and Bacteroides fragilis CfiA enzymes, respectively. SB216968 was particularly active against the Aeromonas hydrophila CphA metallo-beta-lactamase and was found to be an uncompetitive inhibitor of this enzyme (Ki = 3.9 microM), whereas it exhibited irreversible inhibition of the L-1 enzyme. These observations with this series of compounds have revealed subtle differences between the active sites of different metallo-beta-lactamases. Finally, a novel application for isothermal titration calorimetry for assessing the zinc chelating activity of candidate inhibitors is also presented.
Full Text
The Full Text of this article is available as a PDF (257.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adam M., Damblon C., Plaitin B., Christiaens L., Frère J. M. Chromogenic depsipeptide substrates for beta-lactamases and penicillin-sensitive DD-peptidases. Biochem J. 1990 Sep 1;270(2):525–529. doi: 10.1042/bj2700525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berger A., Schechter I. Mapping the active site of papain with the aid of peptide substrates and inhibitors. Philos Trans R Soc Lond B Biol Sci. 1970 Feb 12;257(813):249–264. doi: 10.1098/rstb.1970.0024. [DOI] [PubMed] [Google Scholar]
- Carfi A., Pares S., Duée E., Galleni M., Duez C., Frère J. M., Dideberg O. The 3-D structure of a zinc metallo-beta-lactamase from Bacillus cereus reveals a new type of protein fold. EMBO J. 1995 Oct 16;14(20):4914–4921. doi: 10.1002/j.1460-2075.1995.tb00174.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Concha N. O., Rasmussen B. A., Bush K., Herzberg O. Crystal structure of the wide-spectrum binuclear zinc beta-lactamase from Bacteroides fragilis. Structure. 1996 Jul 15;4(7):823–836. doi: 10.1016/s0969-2126(96)00089-5. [DOI] [PubMed] [Google Scholar]
- Damblon C., Zhao G. H., Jamin M., Ledent P., Dubus A., Vanhove M., Raquet X., Christiaens L., Frère J. M. Breakdown of the stereospecificity of DD-peptidases and beta-lactamases with thiolester substrates. Biochem J. 1995 Jul 15;309(Pt 2):431–436. doi: 10.1042/bj3090431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies R. B., Abraham E. P. Metal cofactor requirements of beta-lactamase II. Biochem J. 1974 Oct;143(1):129–135. doi: 10.1042/bj1430129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farmer T. H., Page J. W., Payne D. J., Knowles D. J. Kinetic and physical studies of beta-lactamase inhibition by a novel penem, BRL 42715. Biochem J. 1994 Nov 1;303(Pt 3):825–830. doi: 10.1042/bj3030825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felici A., Amicosante G., Oratore A., Strom R., Ledent P., Joris B., Fanuel L., Frère J. M. An overview of the kinetic parameters of class B beta-lactamases. Biochem J. 1993 Apr 1;291(Pt 1):151–155. doi: 10.1042/bj2910151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grandchamps J., Nguyen-Distèche M., Damblon C., Frère J. M., Ghuysen J. M. Streptomyces K15 active-site serine DD-transpeptidase: specificity profile for peptide, thiol ester and ester carbonyl donors and pathways of the transfer reactions. Biochem J. 1995 Apr 15;307(Pt 2):335–339. doi: 10.1042/bj3070335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito H., Arakawa Y., Ohsuka S., Wacharotayankun R., Kato N., Ohta M. Plasmid-mediated dissemination of the metallo-beta-lactamase gene blaIMP among clinically isolated strains of Serratia marcescens. Antimicrob Agents Chemother. 1995 Apr;39(4):824–829. doi: 10.1128/aac.39.4.824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jamin M., Adam M., Damblon C., Christiaens L., Frère J. M. Accumulation of acyl-enzyme in DD-peptidase-catalysed reactions with analogues of peptide substrates. Biochem J. 1991 Dec 1;280(Pt 2):499–506. doi: 10.1042/bj2800499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KITZ R., WILSON I. B. Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. J Biol Chem. 1962 Oct;237:3245–3249. [PubMed] [Google Scholar]
- Khushi T., Payne D. J., Fosberry A., Reading C. Production of metal dependent beta-lactamases by clinical strains of Bacteroides fragilis isolated before 1987. J Antimicrob Chemother. 1996 Feb;37(2):345–350. doi: 10.1093/jac/37.2.345. [DOI] [PubMed] [Google Scholar]
- Massidda O., Rossolini G. M., Satta G. The Aeromonas hydrophila cphA gene: molecular heterogeneity among class B metallo-beta-lactamases. J Bacteriol. 1991 Aug;173(15):4611–4617. doi: 10.1128/jb.173.15.4611-4617.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Payne D. J., Cramp R., Winstanley D. J., Knowles D. J. Comparative activities of clavulanic acid, sulbactam, and tazobactam against clinically important beta-lactamases. Antimicrob Agents Chemother. 1994 Apr;38(4):767–772. doi: 10.1128/aac.38.4.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Payne D. J. Metallo-beta-lactamases--a new therapeutic challenge. J Med Microbiol. 1993 Aug;39(2):93–99. doi: 10.1099/00222615-39-2-93. [DOI] [PubMed] [Google Scholar]
- Payne D. J., Skett P. W., Aplin R. T., Robinson C. V., Knowles D. J. beta-Lactamase ragged ends detected by electrospray mass spectrometry correlates poorly with multiple banding on isoelectric focusing. Biol Mass Spectrom. 1994 Mar;23(3):159–164. doi: 10.1002/bms.1200230307. [DOI] [PubMed] [Google Scholar]
- Sabath L. D., Finland M. Thiol-group binding of zinc to a beta-lactamase of Bacillus cereus: differential effects on enzyme activity with penicillin and cephalosporins as substrates. J Bacteriol. 1968 May;95(5):1513–1519. doi: 10.1128/jb.95.5.1513-1519.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutton B. J., Artymiuk P. J., Cordero-Borboa A. E., Little C., Phillips D. C., Waley S. G. An X-ray-crystallographic study of beta-lactamase II from Bacillus cereus at 0.35 nm resolution. Biochem J. 1987 Nov 15;248(1):181–188. doi: 10.1042/bj2480181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiseman T., Williston S., Brandts J. F., Lin L. N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem. 1989 May 15;179(1):131–137. doi: 10.1016/0003-2697(89)90213-3. [DOI] [PubMed] [Google Scholar]
- Xu Y., Soto G., Adachi H., van der Linden M. P., Keck W., Pratt R. F. Relative specificities of a series of beta-lactam-recognizing enzymes towards the side-chains of penicillins and of acyclic thioldepsipeptides. Biochem J. 1994 Sep 15;302(Pt 3):851–856. doi: 10.1042/bj3020851. [DOI] [PMC free article] [PubMed] [Google Scholar]