Abstract
A DNA clone from Rhodococcus equi conferring low-level rifampin resistance through the ability to inactivate this antibiotic via its decomposition was identified. The iri (inactivation of rifampin) gene consisted of an open reading frame of 1,437 bp encoding a 479-amino-acid sequence strongly resembling those of monooxygenases acting upon phenolic compounds or involved in polyketide antibiotic synthesis. When expressed in Escherichia coli, the gene conferred resistance to a > 50-micrograms/ml concentration of the drug.
Full Text
The Full Text of this article is available as a PDF (205.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bibb M. J., Findlay P. R., Johnson M. W. The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene. 1984 Oct;30(1-3):157–166. doi: 10.1016/0378-1119(84)90116-1. [DOI] [PubMed] [Google Scholar]
- Clavé D., Archambaud M., Rouquet R. M., Massip P., Moatti N. Activité in vitro de vingt antibiotiques sur Rhodococcus equi. Pathol Biol (Paris) 1991 May;39(5):424–428. [PubMed] [Google Scholar]
- Dabbs E. R., Gowan B., Andersen S. J. Nocardioform arsenic resistance plasmids and construction of Rhodococcus cloning vectors. Plasmid. 1990 May;23(3):242–247. doi: 10.1016/0147-619x(90)90056-i. [DOI] [PubMed] [Google Scholar]
- Dabbs E. R., Yazawa K., Mikami Y., Miyaji M., Morisaki N., Iwasaki S., Furihata K. Ribosylation by mycobacterial strains as a new mechanism of rifampin inactivation. Antimicrob Agents Chemother. 1995 Apr;39(4):1007–1009. doi: 10.1128/aac.39.4.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dabbs E. R., Yazawa K., Tanaka Y., Mikami Y., Miyaji M., Andersen S. J., Morisaki N., Iwasaki S., Shida O., Takagi H. Rifampicin inactivation by Bacillus species. J Antibiot (Tokyo) 1995 Aug;48(8):815–819. doi: 10.7164/antibiotics.48.815. [DOI] [PubMed] [Google Scholar]
- Dairi T., Nakano T., Aisaka K., Katsumata R., Hasegawa M. Cloning and nucleotide sequence of the gene responsible for chlorination of tetracycline. Biosci Biotechnol Biochem. 1995 Jun;59(6):1099–1106. doi: 10.1271/bbb.59.1099. [DOI] [PubMed] [Google Scholar]
- Emmons W., Reichwein B., Winslow D. L. Rhodococcus equi infection in the patient with AIDS: literature review and report of an unusual case. Rev Infect Dis. 1991 Jan-Feb;13(1):91–96. doi: 10.1093/clinids/13.1.91. [DOI] [PubMed] [Google Scholar]
- Harvey R. L., Sunstrum J. C. Rhodococcus equi infection in patients with and without human immunodeficiency virus infection. Rev Infect Dis. 1991 Jan-Feb;13(1):139–145. doi: 10.1093/clinids/13.1.139. [DOI] [PubMed] [Google Scholar]
- Honore N., Cole S. T. Molecular basis of rifampin resistance in Mycobacterium leprae. Antimicrob Agents Chemother. 1993 Mar;37(3):414–418. doi: 10.1128/aac.37.3.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kälin M., Neujahr H. Y., Weissmahr R. N., Sejlitz T., Jöhl R., Fiechter A., Reiser J. Phenol hydroxylase from Trichosporon cutaneum: gene cloning, sequence analysis, and functional expression in Escherichia coli. J Bacteriol. 1992 Nov;174(22):7112–7120. doi: 10.1128/jb.174.22.7112-7120.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipsky B. A., Goldberger A. C., Tompkins L. S., Plorde J. J. Infections caused by nondiphtheria corynebacteria. Rev Infect Dis. 1982 Nov-Dec;4(6):1220–1235. doi: 10.1093/clinids/4.6.1220. [DOI] [PubMed] [Google Scholar]
- Maggi N., Pasqualucci C. R., Ballotta R., Sensi P. Rifampicin: a new orally active rifamycin. Chemotherapy. 1966;11(5):285–292. doi: 10.1159/000220462. [DOI] [PubMed] [Google Scholar]
- Quan S., Dabbs E. R. Nocardioform arsenic resistance plasmid characterization and improved Rhodococcus cloning vectors. Plasmid. 1993 Jan;29(1):74–79. doi: 10.1006/plas.1993.1010. [DOI] [PubMed] [Google Scholar]
- Shen B., Hutchinson C. R. Triple hydroxylation of tetracenomycin A2 to tetracenomycin C in Streptomyces glaucescens. Overexpression of the tcmG gene in Streptomyces lividans and characterization of the tetracenomycin A2 oxygenase. J Biol Chem. 1994 Dec 2;269(48):30726–30733. [PubMed] [Google Scholar]
- Tanaka Y., Yazawa K., Dabbs E. R., Nishikawa K., Komaki H., Mikami Y., Miyaji M., Morisaki N., Iwasaki S. Different rifampicin inactivation mechanisms in Nocardia and related taxa. Microbiol Immunol. 1996;40(1):1–4. doi: 10.1111/j.1348-0421.1996.tb03303.x. [DOI] [PubMed] [Google Scholar]
- Telenti A., Imboden P., Marchesi F., Lowrie D., Cole S., Colston M. J., Matter L., Schopfer K., Bodmer T. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993 Mar 13;341(8846):647–650. doi: 10.1016/0140-6736(93)90417-f. [DOI] [PubMed] [Google Scholar]
- Yang K., Han L., Ayer S. W., Vining L. C. Accumulation of the angucycline antibiotic rabelomycin after disruption of an oxygenase gene in the jadomycin B biosynthetic gene cluster of Streptomyces venezuelae. Microbiology. 1996 Jan;142(Pt 1):123–132. doi: 10.1099/13500872-142-1-123. [DOI] [PubMed] [Google Scholar]
- Yazawa K., Mikami Y., Maeda A., Akao M., Morisaki N., Iwasaki S. Inactivation of rifampin by Nocardia brasiliensis. Antimicrob Agents Chemother. 1993 Jun;37(6):1313–1317. doi: 10.1128/aac.37.6.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yazawa K., Mikami Y., Maeda A., Morisaki N., Iwasaki S. Phosphorylative inactivation of rifampicin by Nocardia otitidiscaviarum. J Antimicrob Chemother. 1994 Jun;33(6):1127–1135. doi: 10.1093/jac/33.6.1127. [DOI] [PubMed] [Google Scholar]