Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Feb;41(2):236–241. doi: 10.1128/aac.41.2.236

Survival of anti-Clostridium difficile bovine immunoglobulin concentrate in the human gastrointestinal tract.

C P Kelly 1, S Chetham 1, S Keates 1, E F Bostwick 1, A M Roush 1, I Castagliuolo 1, J T LaMont 1, C Pothoulakis 1
PMCID: PMC163695  PMID: 9021173

Abstract

To be therapeutically active, oral hyperimmune bovine immunoglobulin concentrate (BIC) must survive its passage through the intestinal tract. This led us to study the gastrointestinal stability of orally administered BIC directed against Clostridium difficile toxins (BIC-C. difficile). BIC-C. difficile was stable at neutral pH in vitro but was degraded at low pH, particularly in the presence of pepsin. Healthy volunteers (n = 6) took BIC-C. difficile (45 or 8 g) as a single oral dose. Total bovine immunoglobulin G (IgG) and specific anti-C. difficile IgG were measured in the stool. BIC was given under the following conditions: in the fasting state, in the fed state, with antacid, during omeprazole therapy, or in enteric capsules (released at pH > 6). The mean fecal bovine IgG content of 3-day stool collections was similar in the fasting (536 mg; 3.8% of the ingested dose of BIC), fed (221 mg; 1.6%), and antacid (381 mg; 2.7%) groups. Omeprazole therapy was associated with increased fecal bovine IgG levels (1253 mg; 8.8%), but this difference did not reach statistical significance (P = 0.07). Administration of 8 g of BIC-C. difficile in enteric capsules resulted in substantially higher fecal bovine IgG levels (1,124 mg; 32.7% of the oral dose) than those obtained after administration of nonencapsulated BIC (22 MG; 0.6%; P = 0.004). An inverse relationship was noted between intestinal transit time and fecal bovine IgG content (R = 0.83; P = 0.04 [data from omeprazole group]). Filtrates of stool samples collected after oral administration of BIC-C. difficile neutralized the cytotoxicity of C. difficile toxins A and B, whereas control stool filtrates did not. Bovine colostral IgG undergoes partial degradation in the intestinal tract. Exposure to acidic gastric secretions and prolonged colonic transit may both contribute to IgG degradation. Nonetheless, humans taking BIC-C. difficile orally have neutralizing antitoxin activity in their stool.

Full Text

The Full Text of this article is available as a PDF (243.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allo M., Silva J., Jr, Fekety R., Rifkin G. D., Waskin H. Prevention of clindamycin-induced colitis in hamsters by Clostridium sordellii antitoxin. Gastroenterology. 1979 Feb;76(2):351–355. [PubMed] [Google Scholar]
  2. Barroso L. A., Wang S. Z., Phelps C. J., Johnson J. L., Wilkins T. D. Nucleotide sequence of Clostridium difficile toxin B gene. Nucleic Acids Res. 1990 Jul 11;18(13):4004–4004. doi: 10.1093/nar/18.13.4004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Butler J. E., Kennedy N. The differential enzyme susceptibility of bovine immunoglobulin G1 and immunoglobulin G2 to pepsin and papain. Biochim Biophys Acta. 1978 Jul 21;535(1):125–137. doi: 10.1016/0005-2795(78)90039-9. [DOI] [PubMed] [Google Scholar]
  4. Corthier G., Muller M. C., Wilkins T. D., Lyerly D., L'Haridon R. Protection against experimental pseudomembranous colitis in gnotobiotic mice by use of monoclonal antibodies against Clostridium difficile toxin A. Infect Immun. 1991 Mar;59(3):1192–1195. doi: 10.1128/iai.59.3.1192-1195.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davidson G. P., Whyte P. B., Daniels E., Franklin K., Nunan H., McCloud P. I., Moore A. G., Moore D. J. Passive immunisation of children with bovine colostrum containing antibodies to human rotavirus. Lancet. 1989 Sep 23;2(8665):709–712. doi: 10.1016/s0140-6736(89)90771-x. [DOI] [PubMed] [Google Scholar]
  6. Dove C. H., Wang S. Z., Price S. B., Phelps C. J., Lyerly D. M., Wilkins T. D., Johnson J. L. Molecular characterization of the Clostridium difficile toxin A gene. Infect Immun. 1990 Feb;58(2):480–488. doi: 10.1128/iai.58.2.480-488.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FAHEY J. L., MCKELVEY E. M. QUANTITATIVE DETERMINATION OF SERUM IMMUNOGLOBULINS IN ANTIBODY-AGAR PLATES. J Immunol. 1965 Jan;94:84–90. [PubMed] [Google Scholar]
  8. Fernie D. S., Thomson R. O., Batty I., Walker P. D. Active and passive immunization to protect against antibiotic associated caecitis in hamsters. Dev Biol Stand. 1983;53:325–332. [PubMed] [Google Scholar]
  9. Hilpert H., Brüssow H., Mietens C., Sidoti J., Lerner L., Werchau H. Use of bovine milk concentrate containing antibody to rotavirus to treat rotavirus gastroenteritis in infants. J Infect Dis. 1987 Jul;156(1):158–166. doi: 10.1093/infdis/156.1.158. [DOI] [PubMed] [Google Scholar]
  10. Kelly C. P., Becker S., Linevsky J. K., Joshi M. A., O'Keane J. C., Dickey B. F., LaMont J. T., Pothoulakis C. Neutrophil recruitment in Clostridium difficile toxin A enteritis in the rabbit. J Clin Invest. 1994 Mar;93(3):1257–1265. doi: 10.1172/JCI117080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kelly C. P. Immune response to Clostridium difficile infection. Eur J Gastroenterol Hepatol. 1996 Nov;8(11):1048–1053. doi: 10.1097/00042737-199611000-00004. [DOI] [PubMed] [Google Scholar]
  12. Kelly C. P., Pothoulakis C., LaMont J. T. Clostridium difficile colitis. N Engl J Med. 1994 Jan 27;330(4):257–262. doi: 10.1056/NEJM199401273300406. [DOI] [PubMed] [Google Scholar]
  13. Kelly C. P., Pothoulakis C., Orellana J., LaMont J. T. Human colonic aspirates containing immunoglobulin A antibody to Clostridium difficile toxin A inhibit toxin A-receptor binding. Gastroenterology. 1992 Jan;102(1):35–40. doi: 10.1016/0016-5085(92)91781-x. [DOI] [PubMed] [Google Scholar]
  14. Kelly C. P., Pothoulakis C., Vavva F., Castagliuolo I., Bostwick E. F., O'Keane J. C., Keates S., LaMont J. T. Anti-Clostridium difficile bovine immunoglobulin concentrate inhibits cytotoxicity and enterotoxicity of C. difficile toxins. Antimicrob Agents Chemother. 1996 Feb;40(2):373–379. doi: 10.1128/aac.40.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kim P. H., Iaconis J. P., Rolfe R. D. Immunization of adult hamsters against Clostridium difficile-associated ileocecitis and transfer of protection to infant hamsters. Infect Immun. 1987 Dec;55(12):2984–2992. doi: 10.1128/iai.55.12.2984-2992.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leung D. Y., Kelly C. P., Boguniewicz M., Pothoulakis C., LaMont J. T., Flores A. Treatment with intravenously administered gamma globulin of chronic relapsing colitis induced by Clostridium difficile toxin. J Pediatr. 1991 Apr;118(4 Pt 1):633–637. doi: 10.1016/s0022-3476(05)83393-1. [DOI] [PubMed] [Google Scholar]
  17. Libby J. M., Jortner B. S., Wilkins T. D. Effects of the two toxins of Clostridium difficile in antibiotic-associated cecitis in hamsters. Infect Immun. 1982 May;36(2):822–829. doi: 10.1128/iai.36.2.822-829.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lyerly D. M., Bostwick E. F., Binion S. B., Wilkins T. D. Passive immunization of hamsters against disease caused by Clostridium difficile by use of bovine immunoglobulin G concentrate. Infect Immun. 1991 Jun;59(6):2215–2218. doi: 10.1128/iai.59.6.2215-2218.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lyerly D. M., Krivan H. C., Wilkins T. D. Clostridium difficile: its disease and toxins. Clin Microbiol Rev. 1988 Jan;1(1):1–18. doi: 10.1128/cmr.1.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lyerly D. M., Lockwood D. E., Richardson S. H., Wilkins T. D. Biological activities of toxins A and B of Clostridium difficile. Infect Immun. 1982 Mar;35(3):1147–1150. doi: 10.1128/iai.35.3.1147-1150.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nord J., Ma P., DiJohn D., Tzipori S., Tacket C. O. Treatment with bovine hyperimmune colostrum of cryptosporidial diarrhea in AIDS patients. AIDS. 1990 Jun;4(6):581–584. doi: 10.1097/00002030-199006000-00015. [DOI] [PubMed] [Google Scholar]
  22. Pearson J., Allen A., Venables C. Gastric mucus: isolation and polymeric structure of the undegraded glycoprotein: its breakdown by pepsin. Gastroenterology. 1980 Apr;78(4):709–715. [PubMed] [Google Scholar]
  23. Riegler M., Sedivy R., Pothoulakis C., Hamilton G., Zacherl J., Bischof G., Cosentini E., Feil W., Schiessel R., LaMont J. T. Clostridium difficile toxin B is more potent than toxin A in damaging human colonic epithelium in vitro. J Clin Invest. 1995 May;95(5):2004–2011. doi: 10.1172/JCI117885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Roos N., Mahé S., Benamouzig R., Sick H., Rautureau J., Tomé D. 15N-labeled immunoglobulins from bovine colostrum are partially resistant to digestion in human intestine. J Nutr. 1995 May;125(5):1238–1244. doi: 10.1093/jn/125.5.1238. [DOI] [PubMed] [Google Scholar]
  25. Tacket C. O., Binion S. B., Bostwick E., Losonsky G., Roy M. J., Edelman R. Efficacy of bovine milk immunoglobulin concentrate in preventing illness after Shigella flexneri challenge. Am J Trop Med Hyg. 1992 Sep;47(3):276–283. doi: 10.4269/ajtmh.1992.47.276. [DOI] [PubMed] [Google Scholar]
  26. Tacket C. O., Losonsky G., Link H., Hoang Y., Guesry P., Hilpert H., Levine M. M. Protection by milk immunoglobulin concentrate against oral challenge with enterotoxigenic Escherichia coli. N Engl J Med. 1988 May 12;318(19):1240–1243. doi: 10.1056/NEJM198805123181904. [DOI] [PubMed] [Google Scholar]
  27. Triadafilopoulos G., Pothoulakis C., O'Brien M. J., LaMont J. T. Differential effects of Clostridium difficile toxins A and B on rabbit ileum. Gastroenterology. 1987 Aug;93(2):273–279. doi: 10.1016/0016-5085(87)91014-6. [DOI] [PubMed] [Google Scholar]
  28. de Rham O., Isliker H. Proteolysis of bovine immunoglobulins. Int Arch Allergy Appl Immunol. 1977;55(1-6):61–69. doi: 10.1159/000231910. [DOI] [PubMed] [Google Scholar]
  29. von Eichel-Streiber C., Laufenberg-Feldmann R., Sartingen S., Schulze J., Sauerborn M. Cloning of Clostridium difficile toxin B gene and demonstration of high N-terminal homology between toxin A and B. Med Microbiol Immunol. 1990;179(5):271–279. doi: 10.1007/BF00192465. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES