Abstract
Acinetobacter baumannii is responsible for severe nosocomial pneumonia. To evaluate new therapeutic regimens for infections due to multiresistant strains and to study the pharmacodynamic properties of various antibiotics, we developed an experimental mouse model of acute A. baumannii pneumonia. C3H/HeN mice rendered transiently neutropenic were infected intratracheally with 5 x 10(6) CFU of A. baumannii. The mean log10 CFU/g of lung homogenate (+/- the standard deviation) were 9 +/- 0.9, 9.4 +/- 0.8, 8.6 +/- 1.2, and 7.7 +/- 1.4 on days 1, 2, 3, and 4 postinoculation. The lung pathology was characterized by pneumonitis with edema and a patchy distribution of hemorrhages in the peribronchovascular spaces of both lungs. Abscesses formed on days 3 and 4. Four days after inoculation, subacute pneumonitis characterized by alveolar macrophage proliferation and areas of fibrosis was observed. The cumulative mortality on day 4 was 85%. This new model was used to study the effects of 1, 2, or 3 50-mg/kg doses of imipenem. Imipenem concentrations in lungs were above the MIC for 2 h after the last dose. The in vivo postantibiotic effect (PAE) was determined during the 9-h period following the last dose; it decreased in duration with the number of doses: 9.6, 6.4, and 4 h after 1, 2, and 3 50-mg/kg doses, respectively. In contrast, no in vitro PAE was observed. This model offers a reproducible acute course of A. baumannii pneumonia. The presence of a prolonged in vivo PAE supports the currently recommended dosing intervals of imipenem for the treatment of human infections due to A. baumannii, i.e., 15 mg/kg three times a day.
Full Text
The Full Text of this article is available as a PDF (796.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen K. D., Green H. T. Hospital outbreak of multi-resistant Acinetobacter anitratus: an airborne mode of spread? J Hosp Infect. 1987 Mar;9(2):110–119. doi: 10.1016/0195-6701(87)90048-x. [DOI] [PubMed] [Google Scholar]
- Anstey N. M., Currie B. J., Withnall K. M. Community-acquired Acinetobacter pneumonia in the Northern Territory of Australia. Clin Infect Dis. 1992 Jan;14(1):83–91. doi: 10.1093/clinids/14.1.83. [DOI] [PubMed] [Google Scholar]
- Benoni G., Cuzzolin L., Bertrand C., Pucchetti V., Velo G. Penetration of imipenem-cilastatin into the lung tissue and pericardial fluid of thoracotomized patients. Chemioterapia. 1987 Jun;6(2 Suppl):259–260. [PubMed] [Google Scholar]
- Bick J. A., Semel J. D. Fulminant community-acquired Acinetobacter pneumonia in a healthy woman. Clin Infect Dis. 1993 Oct;17(4):820–821. doi: 10.1093/clinids/17.4.820. [DOI] [PubMed] [Google Scholar]
- Bustamante C. I., Drusano G. L., Tatem B. A., Standiford H. C. Postantibiotic effect of imipenem on Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1984 Nov;26(5):678–682. doi: 10.1128/aac.26.5.678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buxton A. E., Anderson R. L., Werdegar D., Atlas E. Nosocomial respiratory tract infection and colonization with Acinetobacter calcoaceticus. Epidemiologic characteristics. Am J Med. 1978 Sep;65(3):507–513. doi: 10.1016/0002-9343(78)90777-5. [DOI] [PubMed] [Google Scholar]
- Daikos G. L., Lolans V. T., Jackson G. G. First-exposure adaptive resistance to aminoglycoside antibiotics in vivo with meaning for optimal clinical use. Antimicrob Agents Chemother. 1991 Jan;35(1):117–123. doi: 10.1128/aac.35.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esposito A. L., Pennington J. E. Experimental pneumonia due to Haemophilus influenzae: observations on pathogenesis and treatment. J Infect Dis. 1984 May;149(5):728–734. doi: 10.1093/infdis/149.5.728. [DOI] [PubMed] [Google Scholar]
- Fagon J. Y., Chastre J., Domart Y., Trouillet J. L., Pierre J., Darne C., Gibert C. Nosocomial pneumonia in patients receiving continuous mechanical ventilation. Prospective analysis of 52 episodes with use of a protected specimen brush and quantitative culture techniques. Am Rev Respir Dis. 1989 Apr;139(4):877–884. doi: 10.1164/ajrccm/139.4.877. [DOI] [PubMed] [Google Scholar]
- Fantin B., Leggett J., Ebert S., Craig W. A. Correlation between in vitro and in vivo activity of antimicrobial agents against gram-negative bacilli in a murine infection model. Antimicrob Agents Chemother. 1991 Jul;35(7):1413–1422. doi: 10.1128/aac.35.7.1413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerber A. U., Brugger H. P., Feller C., Stritzko T., Stalder B. Antibiotic therapy of infections due to Pseudomonas aeruginosa in normal and granulocytopenic mice: comparison of murine and human pharmacokinetics. J Infect Dis. 1986 Jan;153(1):90–97. doi: 10.1093/infdis/153.1.90. [DOI] [PubMed] [Google Scholar]
- Gottfredsson M., Erlendsdóttir H., Gudmundsson A., Gudmundsson S. Different patterns of bacterial DNA synthesis during postantibiotic effect. Antimicrob Agents Chemother. 1995 Jun;39(6):1314–1319. doi: 10.1128/aac.39.6.1314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gudmundsson S., Vogelman B., Craig W. A. The in-vivo postantibiotic effect of imipenem and other new antimicrobials. J Antimicrob Chemother. 1986 Dec;18 (Suppl E):67–73. doi: 10.1093/jac/18.supplement_e.67. [DOI] [PubMed] [Google Scholar]
- Hashizume T., Okumoto Y., Ogashiwa M., Shimano K. Penetration of imipenem and other antibiotics into inflammatory exudate and their efficacy in pseudomonas infection in the rat granuloma pouch model. J Antimicrob Chemother. 1987 Sep;20(3):413–416. doi: 10.1093/jac/20.3.413. [DOI] [PubMed] [Google Scholar]
- Hessen M. T., Pitsakis P. G., Levison M. E. Absence of a postantibiotic effect in experimental Pseudomonas endocarditis treated with imipenem, with or without gentamicin. J Infect Dis. 1988 Sep;158(3):542–548. doi: 10.1093/infdis/158.3.542. [DOI] [PubMed] [Google Scholar]
- MacKenzie F. M., Gould I. M. The post-antibiotic effect. J Antimicrob Chemother. 1993 Oct;32(4):519–537. doi: 10.1093/jac/32.4.519. [DOI] [PubMed] [Google Scholar]
- Majcherczyk P. A., Livermore D. M. Penicillin-binding protein (PBP) 2 and the post-antibiotic effect of carbapenems. J Antimicrob Chemother. 1990 Oct;26(4):593–594. doi: 10.1093/jac/26.4.593. [DOI] [PubMed] [Google Scholar]
- Obana Y., Nishino T., Tanino T. In-vitro and in-vivo activities of antimicrobial agents against Acinetobacter calcoaceticus. J Antimicrob Chemother. 1985 Apr;15(4):441–448. doi: 10.1093/jac/15.4.441. [DOI] [PubMed] [Google Scholar]
- Obana Y. Pathogenic significance of Acinetobacter calcoaceticus: analysis of experimental infection in mice. Microbiol Immunol. 1986;30(7):645–657. doi: 10.1111/j.1348-0421.1986.tb02991.x. [DOI] [PubMed] [Google Scholar]
- Pearson R. D., Steigbigel R. T., Davis H. T., Chapman S. W. Method of reliable determination of minimal lethal antibiotic concentrations. Antimicrob Agents Chemother. 1980 Nov;18(5):699–708. doi: 10.1128/aac.18.5.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Torres A., Aznar R., Gatell J. M., Jiménez P., González J., Ferrer A., Celis R., Rodriguez-Roisin R. Incidence, risk, and prognosis factors of nosocomial pneumonia in mechanically ventilated patients. Am Rev Respir Dis. 1990 Sep;142(3):523–528. doi: 10.1164/ajrccm/142.3.523. [DOI] [PubMed] [Google Scholar]
- Vallée E., Azoulay-Dupuis E., Pocidalo J. J., Bergogne-Bérézin E. Activity and local delivery of azithromycin in a mouse model of Haemophilus influenzae lung infection. Antimicrob Agents Chemother. 1992 Jul;36(7):1412–1417. doi: 10.1128/aac.36.7.1412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veber B., Vallée E., Desmonts J. M., Pocidalo J. J., Azoulay-Dupuis E. Correlation between macrolide lung pharmacokinetics and therapeutic efficacy in a mouse model of pneumococcal pneumonia. J Antimicrob Chemother. 1993 Sep;32(3):473–482. doi: 10.1093/jac/32.3.473. [DOI] [PubMed] [Google Scholar]
- Vila J., Marcos A., Marco F., Abdalla S., Vergara Y., Reig R., Gomez-Lus R., Jimenez de Anta T. In vitro antimicrobial production of beta-lactamases, aminoglycoside-modifying enzymes, and chloramphenicol acetyltransferase by and susceptibility of clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother. 1993 Jan;37(1):138–141. doi: 10.1128/aac.37.1.138. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yan S., Bohach G. A., Stevens D. L. Persistent acylation of high-molecular-weight penicillin-binding proteins by penicillin induces the postantibiotic effect in Streptococcus pyogenes. J Infect Dis. 1994 Sep;170(3):609–614. doi: 10.1093/infdis/170.3.609. [DOI] [PubMed] [Google Scholar]