Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Feb;41(2):363–373. doi: 10.1128/aac.41.2.363

The population dynamics of antimicrobial chemotherapy.

M Lipsitch 1, B R Levin 1
PMCID: PMC163715  PMID: 9021193

Abstract

We present and analyze a series of mathematical models for the emergence of resistance during antibiotic treatment of an infected host. The models consider the population dynamics of antibiotic-sensitive and -resistant bacteria during the course of treatment and addresses the following problems: (i) the probability of obtaining a resistant mutant during the course of treatment as a function of antibiotic exposure; (ii) the conditions under which high, infrequent doses of an antibiotic are predicted to succeed in preventing the emergence of resistance; (iii) the conditions for the success of multiple drug treatment in suppressing the emergence of resistance and the relationship between antibiotic synergism and suppression of resistance; and (iv) the conditions under which nonadherence to the prescribed treatment regimen is predicted to result in treatment failure due to resistance. We analyze the predictions of the model for interpreting and extrapolating existing experimental studies of treatment efficacy and for optimizing treatment protocols to prevent the emergence of resistance.

Full Text

The Full Text of this article is available as a PDF (323.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blaser J., Stone B. B., Groner M. C., Zinner S. H. Comparative study with enoxacin and netilmicin in a pharmacodynamic model to determine importance of ratio of antibiotic peak concentration to MIC for bactericidal activity and emergence of resistance. Antimicrob Agents Chemother. 1987 Jul;31(7):1054–1060. doi: 10.1128/aac.31.7.1054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford W. Z., Martin J. N., Reingold A. L., Schecter G. F., Hopewell P. C., Small P. M. The changing epidemiology of acquired drug-resistant tuberculosis in San Francisco, USA. Lancet. 1996 Oct 5;348(9032):928–931. doi: 10.1016/S0140-6736(96)03027-9. [DOI] [PubMed] [Google Scholar]
  3. Brady M. S., Strobel R. J., Katz S. E. In vitro analytical system for determining the ability of antibiotics at residue levels to select for resistance in bacteria. J Assoc Off Anal Chem. 1988 Mar-Apr;71(2):295–298. [PubMed] [Google Scholar]
  4. Carsenti-Etesse H., Durant J., De Salvador F., Bensoussan M., Bensoussan F., Pradier C., Bernard E., Mondain V., Thabaut A., Dellamonica P. Possible prevention of in vitro selection of resistant Streptococcus pneumoniae by beta-lactamase inhibitors. Eur J Clin Microbiol Infect Dis. 1994 Dec;13(12):1058–1062. doi: 10.1007/BF02111828. [DOI] [PubMed] [Google Scholar]
  5. Catchpole C., Andrews J. M., Woodcock J., Wise R. The comparative pharmacokinetics and tissue penetration of single-dose ciprofloxacin 400 mg i.v. and 750 mg po. J Antimicrob Chemother. 1994 Jan;33(1):103–110. doi: 10.1093/jac/33.1.103. [DOI] [PubMed] [Google Scholar]
  6. Craig W. A., Salamone F. R. Do antibiotic combinations prevent the emergence of resistant organisms? Infect Control Hosp Epidemiol. 1988 Sep;9(9):417–419. doi: 10.1086/645901. [DOI] [PubMed] [Google Scholar]
  7. Craig W. A., Vogelman B. The postantibiotic effect. Ann Intern Med. 1987 Jun;106(6):900–902. doi: 10.7326/0003-4819-106-6-900. [DOI] [PubMed] [Google Scholar]
  8. Cremieux A. C., Carbon C. Pharmacokinetic and pharmacodynamic requirements for antibiotic therapy of experimental endocarditis. Antimicrob Agents Chemother. 1992 Oct;36(10):2069–2074. doi: 10.1128/aac.36.10.2069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. David H. L. Probability distribution of drug-resistant mutants in unselected populations of Mycobacterium tuberculosis. Appl Microbiol. 1970 Nov;20(5):810–814. doi: 10.1128/am.20.5.810-814.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Drusano G. L., Johnson D. E., Rosen M., Standiford H. C. Pharmacodynamics of a fluoroquinolone antimicrobial agent in a neutropenic rat model of Pseudomonas sepsis. Antimicrob Agents Chemother. 1993 Mar;37(3):483–490. doi: 10.1128/aac.37.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dudley M. N. Pharmacodynamics and pharmacokinetics of antibiotics with special reference to the fluoroquinolones. Am J Med. 1991 Dec 30;91(6A):45S–50S. doi: 10.1016/0002-9343(91)90311-k. [DOI] [PubMed] [Google Scholar]
  12. Dupeyron C., Mangeney N., Sedrati L., Campillo B., Fouet P., Leluan G. Rapid emergence of quinolone resistance in cirrhotic patients treated with norfloxacin to prevent spontaneous bacterial peritonitis. Antimicrob Agents Chemother. 1994 Feb;38(2):340–344. doi: 10.1128/aac.38.2.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Elliott A. M., Berning S. E., Iseman M. D., Peloquin C. A. Failure of drug penetration and acquisition of drug resistance in chronic tuberculous empyema. Tuber Lung Dis. 1995 Oct;76(5):463–467. doi: 10.1016/0962-8479(95)90016-0. [DOI] [PubMed] [Google Scholar]
  14. Fantin B., Carbon C. In vivo antibiotic synergism: contribution of animal models. Antimicrob Agents Chemother. 1992 May;36(5):907–912. doi: 10.1128/aac.36.5.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fish D. N., Piscitelli S. C., Danziger L. H. Development of resistance during antimicrobial therapy: a review of antibiotic classes and patient characteristics in 173 studies. Pharmacotherapy. 1995 May-Jun;15(3):279–291. [PubMed] [Google Scholar]
  16. Flückiger U., Segessenmann C., Gerber A. U. Integration of pharmacokinetics and pharmacodynamics of imipenem in a human-adapted mouse model. Antimicrob Agents Chemother. 1991 Sep;35(9):1905–1910. doi: 10.1128/aac.35.9.1905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Garrett E. R. Kinetics of antimicrobial action. Scand J Infect Dis Suppl. 1978;(14):54–85. [PMC free article] [PubMed] [Google Scholar]
  18. Gerber A. U., Vastola A. P., Brandel J., Craig W. A. Selection of aminoglycoside-resistant variants of Pseudomonas aeruginosa in an in vivo model. J Infect Dis. 1982 Nov;146(5):691–697. doi: 10.1093/infdis/146.5.691. [DOI] [PubMed] [Google Scholar]
  19. Haas C. E., Nix D. E., Schentag J. J. In vitro selection of resistant Helicobacter pylori. Antimicrob Agents Chemother. 1990 Sep;34(9):1637–1641. doi: 10.1128/aac.34.9.1637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Heisig P., Tschorny R. Characterization of fluoroquinolone-resistant mutants of escherichia coli selected in vitro. Antimicrob Agents Chemother. 1994 Jun;38(6):1284–1291. doi: 10.1128/aac.38.6.1284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hyatt J. M., Nix D. E., Stratton C. W., Schentag J. J. In vitro pharmacodynamics of piperacillin, piperacillin-tazobactam, and ciprofloxacin alone and in combination against Staphylococcus aureus, Klebsiella pneumoniae, Enterobacter cloacae, and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1995 Aug;39(8):1711–1716. doi: 10.1128/aac.39.8.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Iseman M. D., Madsen L. A. Chronic tuberculous empyema with bronchopleural fistula resulting in treatment failure and progressive drug resistance. Chest. 1991 Jul;100(1):124–127. doi: 10.1378/chest.100.1.124. [DOI] [PubMed] [Google Scholar]
  23. Kaatz G. W., Seo S. M., Barriere S. L., Albrecht L. M., Rybak M. J. Development of resistance to fleroxacin during therapy of experimental methicillin-susceptible Staphylococcus aureus endocarditis. Antimicrob Agents Chemother. 1991 Aug;35(8):1547–1550. doi: 10.1128/aac.35.8.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kang S. L., Rybak M. J., McGrath B. J., Kaatz G. W., Seo S. M. Pharmacodynamics of levofloxacin, ofloxacin, and ciprofloxacin, alone and in combination with rifampin, against methicillin-susceptible and -resistant Staphylococcus aureus in an in vitro infection model. Antimicrob Agents Chemother. 1994 Dec;38(12):2702–2709. doi: 10.1128/aac.38.12.2702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Korting H. C., Behrendt H., Roth K. H., Neubert U. Repeated exposition to subinhibitory concentrations of antibiotic in vitro readily decreases susceptibility of Neisseria gonorrhoeae to rifampicin, but not to new cephalosporins and penicillin G. Chemotherapy. 1984;30(6):366–372. doi: 10.1159/000238295. [DOI] [PubMed] [Google Scholar]
  26. LOEWE S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung. 1953 Jun;3(6):285–290. [PubMed] [Google Scholar]
  27. Levin B. R., Stewart F. M., Rice V. A. The kinetics of conjugative plasmid transmission: fit of a simple mass action model. Plasmid. 1979 Apr;2(2):247–260. doi: 10.1016/0147-619x(79)90043-x. [DOI] [PubMed] [Google Scholar]
  28. Li R. C., Nix D. E., Schentag J. J. Pharmacodynamic modeling of bacterial kinetics: beta-lactam antibiotics against Escherichia coli. J Pharm Sci. 1994 Jul;83(7):970–975. doi: 10.1002/jps.2600830711. [DOI] [PubMed] [Google Scholar]
  29. Michéa-Hamzehpour M., Pechère J. C., Marchou B., Auckenthaler R. Combination therapy: a way to limit emergence of resistance? Am J Med. 1986 Jun 30;80(6B):138–142. doi: 10.1016/0002-9343(86)90491-2. [DOI] [PubMed] [Google Scholar]
  30. Milatovic D., Braveny I. Development of resistance during antibiotic therapy. Eur J Clin Microbiol. 1987 Jun;6(3):234–244. doi: 10.1007/BF02017607. [DOI] [PubMed] [Google Scholar]
  31. Mitchison D. A. Drug resistance in mycobacteria. Br Med Bull. 1984 Jan;40(1):84–90. doi: 10.1093/oxfordjournals.bmb.a071952. [DOI] [PubMed] [Google Scholar]
  32. Mitchison D. A., Nunn A. J. Influence of initial drug resistance on the response to short-course chemotherapy of pulmonary tuberculosis. Am Rev Respir Dis. 1986 Mar;133(3):423–430. doi: 10.1164/arrd.1986.133.3.423. [DOI] [PubMed] [Google Scholar]
  33. Negri M. C., Morosini M. I., Loza E., Baquero F. In vitro selective antibiotic concentrations of beta-lactams for penicillin-resistant Streptococcus pneumoniae populations. Antimicrob Agents Chemother. 1994 Jan;38(1):122–125. doi: 10.1128/aac.38.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Penner J., Allerberger F., Dierich M. P., Pfaller W., Hager J. In vitro experiments on catheter-related infections due to gram-negative rods. Chemotherapy. 1993 Sep-Oct;39(5):336–354. doi: 10.1159/000239146. [DOI] [PubMed] [Google Scholar]
  35. Prichard M. N., Shipman C., Jr A three-dimensional model to analyze drug-drug interactions. Antiviral Res. 1990 Oct-Nov;14(4-5):181–205. doi: 10.1016/0166-3542(90)90001-n. [DOI] [PubMed] [Google Scholar]
  36. SELKON J. B., DEVADATTA S., KULKARNI K. G., MITCHISON D. A., NARAYANA A. S., NAIR C. N., RAMACHANDRAN K. THE EMERGENCE OF ISONIAZID-RESISTANT CULTURES IN PATIENTS WITH PULMONARY TUBERCULOSIS DURING TREATMENT WITH ISONIAZID ALONE OR ISONIAZID PLUS PAS. Bull World Health Organ. 1964;31:273–294. [PMC free article] [PubMed] [Google Scholar]
  37. Sanders C. C., Sanders W. E., Jr, Goering R. V., Werner V. Selection of multiple antibiotic resistance by quinolones, beta-lactams, and aminoglycosides with special reference to cross-resistance between unrelated drug classes. Antimicrob Agents Chemother. 1984 Dec;26(6):797–801. doi: 10.1128/aac.26.6.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schwalbe R. S., Hoge C. W., Morris J. G., Jr, O'Hanlon P. N., Crawford R. A., Gilligan P. H. In vivo selection for transmissible drug resistance in Salmonella typhi during antimicrobial therapy. Antimicrob Agents Chemother. 1990 Jan;34(1):161–163. doi: 10.1128/aac.34.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sifaoui F., Kitzis M. D., Gutmann L. In vitro selection of one-step mutants of Streptococcus pneumoniae resistant to different oral beta-lactam antibiotics is associated with alterations of PBP2x. Antimicrob Agents Chemother. 1996 Jan;40(1):152–156. doi: 10.1128/aac.40.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Skipper H. E. On mathematical modeling of critical variables in cancer treatment (goals: better understanding of the past and better planning in the future). Bull Math Biol. 1986;48(3-4):253–278. doi: 10.1007/BF02459681. [DOI] [PubMed] [Google Scholar]
  41. Stewart F. M., Levin B. R. The Population Biology of Bacterial Plasmids: A PRIORI Conditions for the Existence of Conjugationally Transmitted Factors. Genetics. 1977 Oct;87(2):209–228. doi: 10.1093/genetics/87.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sumartojo E. When tuberculosis treatment fails. A social behavioral account of patient adherence. Am Rev Respir Dis. 1993 May;147(5):1311–1320. doi: 10.1164/ajrccm/147.5.1311. [DOI] [PubMed] [Google Scholar]
  43. Tankovic J., Desplaces N., Duval J., Courvalin P. In vivo selection during pefloxacin therapy of a mutant of Staphylococcus aureus with two mechanisms of fluoroquinolone resistance. Antimicrob Agents Chemother. 1994 May;38(5):1149–1151. doi: 10.1128/aac.38.5.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Watanakunakorn C. In-vitro selection of resistance of Staphylococcus aureus to teicoplanin and vancomycin. J Antimicrob Chemother. 1990 Jan;25(1):69–72. doi: 10.1093/jac/25.1.69. [DOI] [PubMed] [Google Scholar]
  45. Wei X., Ghosh S. K., Taylor M. E., Johnson V. A., Emini E. A., Deutsch P., Lifson J. D., Bonhoeffer S., Nowak M. A., Hahn B. H. Viral dynamics in human immunodeficiency virus type 1 infection. Nature. 1995 Jan 12;373(6510):117–122. doi: 10.1038/373117a0. [DOI] [PubMed] [Google Scholar]
  46. Zhi J. G., Nightingale C. H., Quintiliani R. Microbial pharmacodynamics of piperacillin in neutropenic mice of systematic infection due to Pseudomonas aeruginosa. J Pharmacokinet Biopharm. 1988 Aug;16(4):355–375. doi: 10.1007/BF01062551. [DOI] [PubMed] [Google Scholar]
  47. Zinner S. H., Dudley M., Blaser J. In vitro models for the study of combination antibiotic therapy in neutropenic patients. Am J Med. 1986 Jun 30;80(6B):156–160. doi: 10.1016/0002-9343(86)90494-8. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES