Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Feb;41(2):394–400. doi: 10.1128/aac.41.2.394

The human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein zinc ejection activity of disulfide benzamides and benzisothiazolones: correlation with anti-HIV and virucidal activities.

P J Tummino 1, P J Harvey 1, T McQuade 1, J Domagala 1, R Gogliotti 1, J Sanchez 1, Y Song 1, D Hupe 1
PMCID: PMC163719  PMID: 9021197

Abstract

It has been shown previously by our group and others that a series of four disulfide benzamides with cellular anti-human immunodeficiency virus (HIV) activity can eject zinc from HIV type 1 nucleocapsid protein (NCp7) in vitro while analogs without antiviral activity do not. We also found that the zinc ejection activity correlates with the loss of the ability of NCp7 to bind to HIV psi RNA in vitro. These observations indicate that the antiviral disulfide benzamides may act at a novel retroviral target of action, i.e., the nucleocapsid protein. The present studies examine the relationship among disulfide benzamide structure, in vitro NCp7 zinc ejection activity, and antiviral activity for a larger series of compounds. All of the antiviral disulfide benzamides were found to eject NCp7 zinc, while some disulfide benzamides with zinc ejection activity are not antiviral. Utilizing the thiol reagent 5,5'-dithiobis(2-nitrobenzoic acid), it was determined that the o-amido-phenyl disulfides being studied cyclize in aqueous solution to form benzisothiazolones. A series of benzisothiazolones, which are stable in solution in the absence of dithiothreitol, were found to eject NCp7 zinc at a rate similar to that of their disulfide benzamide analogs and to possess similar antiviral activity. It was also found that the relative rates of HIV inactivation by various disulfide benzamides and benzisothiazolones correlate with their relative kinetic rates of NCp7 zinc ejection, which is consistent with the nucleocapsid protein being the target of action of these compounds.

Full Text

The Full Text of this article is available as a PDF (261.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi A., Gendelman H. E., Koenig S., Folks T., Willey R., Rabson A., Martin M. A. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol. 1986 Aug;59(2):284–291. doi: 10.1128/jvi.59.2.284-291.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aldovini A., Young R. A. Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus. J Virol. 1990 May;64(5):1920–1926. doi: 10.1128/jvi.64.5.1920-1926.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buckheit R. W., Jr, Hollingshead M. G., Germany-Decker J., White E. L., McMahon J. B., Allen L. B., Ross L. J., Decker W. D., Westbrook L., Shannon W. M. Thiazolobenzimidazole: biological and biochemical anti-retroviral activity of a new nonnucleoside reverse transcriptase inhibitor. Antiviral Res. 1993 Jul;21(3):247–265. doi: 10.1016/0166-3542(93)90031-d. [DOI] [PubMed] [Google Scholar]
  4. D'Aquila R. T., Hughes M. D., Johnson V. A., Fischl M. A., Sommadossi J. P., Liou S. H., Timpone J., Myers M., Basgoz N., Niu M. Nevirapine, zidovudine, and didanosine compared with zidovudine and didanosine in patients with HIV-1 infection. A randomized, double-blind, placebo-controlled trial. National Institute of Allergy and Infectious Diseases AIDS Clinical Trials Group Protocol 241 Investigators. Ann Intern Med. 1996 Jun 15;124(12):1019–1030. doi: 10.7326/0003-4819-124-12-199606150-00001. [DOI] [PubMed] [Google Scholar]
  5. Darlix J. L., Gabus C., Nugeyre M. T., Clavel F., Barré-Sinoussi F. Cis elements and trans-acting factors involved in the RNA dimerization of the human immunodeficiency virus HIV-1. J Mol Biol. 1990 Dec 5;216(3):689–699. doi: 10.1016/0022-2836(90)90392-Y. [DOI] [PubMed] [Google Scholar]
  6. Dorfman T., Luban J., Goff S. P., Haseltine W. A., Göttlinger H. G. Mapping of functionally important residues of a cysteine-histidine box in the human immunodeficiency virus type 1 nucleocapsid protein. J Virol. 1993 Oct;67(10):6159–6169. doi: 10.1128/jvi.67.10.6159-6169.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eron J. J., Benoit S. L., Jemsek J., MacArthur R. D., Santana J., Quinn J. B., Kuritzkes D. R., Fallon M. A., Rubin M. Treatment with lamivudine, zidovudine, or both in HIV-positive patients with 200 to 500 CD4+ cells per cubic millimeter. North American HIV Working Party. N Engl J Med. 1995 Dec 21;333(25):1662–1669. doi: 10.1056/NEJM199512213332502. [DOI] [PubMed] [Google Scholar]
  8. FISCHER R., HURNI H. ON BENZISOTHIAZOLONES: A SERIES WITH A WIDE RANGE OF BACTERIOSTATIC AND FUNGISTATIC ACTIVITY. Arzneimittelforschung. 1964 Dec;14:1301–1306. [PubMed] [Google Scholar]
  9. Gorelick R. J., Nigida S. M., Jr, Bess J. W., Jr, Arthur L. O., Henderson L. E., Rein A. Noninfectious human immunodeficiency virus type 1 mutants deficient in genomic RNA. J Virol. 1990 Jul;64(7):3207–3211. doi: 10.1128/jvi.64.7.3207-3211.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Green L. M., Berg J. M. A retroviral Cys-Xaa2-Cys-Xaa4-His-Xaa4-Cys peptide binds metal ions: spectroscopic studies and a proposed three-dimensional structure. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4047–4051. doi: 10.1073/pnas.86.11.4047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holler T. P., Foltin S. K., Ye Q. Z., Hupe D. J. HIV1 integrase expressed in Escherichia coli from a synthetic gene. Gene. 1993 Dec 22;136(1-2):323–328. doi: 10.1016/0378-1119(93)90488-o. [DOI] [PubMed] [Google Scholar]
  12. Ji X., Klarmann G. J., Preston B. D. Effect of human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein on HIV-1 reverse transcriptase activity in vitro. Biochemistry. 1996 Jan 9;35(1):132–143. doi: 10.1021/bi951707e. [DOI] [PubMed] [Google Scholar]
  13. Kimpton J., Emerman M. Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated beta-galactosidase gene. J Virol. 1992 Apr;66(4):2232–2239. doi: 10.1128/jvi.66.4.2232-2239.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Larder B. A., Kemp S. D., Harrigan P. R. Potential mechanism for sustained antiretroviral efficacy of AZT-3TC combination therapy. Science. 1995 Aug 4;269(5224):696–699. doi: 10.1126/science.7542804. [DOI] [PubMed] [Google Scholar]
  15. Loo J. A., Holler T. P., Sanchez J., Gogliotti R., Maloney L., Reily M. D. Biophysical characterization of zinc ejection from HIV nucleocapsid protein by anti-HIV 2,2'-dithiobis[benzamides] and benzisothiazolones. J Med Chem. 1996 Oct 11;39(21):4313–4320. doi: 10.1021/jm960253w. [DOI] [PubMed] [Google Scholar]
  16. Nara P. L., Fischinger P. J. Quantitative infectivity assay for HIV-1 and-2. Nature. 1988 Mar 31;332(6163):469–470. doi: 10.1038/332469a0. [DOI] [PubMed] [Google Scholar]
  17. Okachi R., Niino H., Kitaura K., Mineura K., Nakamizo Y., Murayama Y., Ono T., Nakamizo A. Synthesis and antibacterial activity of 2,2'-dithiobis(benzamide) derivatives against Mycobacterium species. J Med Chem. 1985 Dec;28(12):1772–1779. doi: 10.1021/jm00150a006. [DOI] [PubMed] [Google Scholar]
  18. Peliska J. A., Balasubramanian S., Giedroc D. P., Benkovic S. J. Recombinant HIV-1 nucleocapsid protein accelerates HIV-1 reverse transcriptase catalyzed DNA strand transfer reactions and modulates RNase H activity. Biochemistry. 1994 Nov 22;33(46):13817–13823. doi: 10.1021/bi00250a036. [DOI] [PubMed] [Google Scholar]
  19. Rice W. G., Supko J. G., Malspeis L., Buckheit R. W., Jr, Clanton D., Bu M., Graham L., Schaeffer C. A., Turpin J. A., Domagala J. Inhibitors of HIV nucleocapsid protein zinc fingers as candidates for the treatment of AIDS. Science. 1995 Nov 17;270(5239):1194–1197. doi: 10.1126/science.270.5239.1194. [DOI] [PubMed] [Google Scholar]
  20. Rodríguez-Rodríguez L., Tsuchihashi Z., Fuentes G. M., Bambara R. A., Fay P. J. Influence of human immunodeficiency virus nucleocapsid protein on synthesis and strand transfer by the reverse transcriptase in vitro. J Biol Chem. 1995 Jun 23;270(25):15005–15011. doi: 10.1074/jbc.270.25.15005. [DOI] [PubMed] [Google Scholar]
  21. Summers M. F., Henderson L. E., Chance M. R., Bess J. W., Jr, South T. L., Blake P. R., Sagi I., Perez-Alvarado G., Sowder R. C., 3rd, Hare D. R. Nucleocapsid zinc fingers detected in retroviruses: EXAFS studies of intact viruses and the solution-state structure of the nucleocapsid protein from HIV-1. Protein Sci. 1992 May;1(5):563–574. doi: 10.1002/pro.5560010502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tummino P. J., Scholten J. D., Harvey P. J., Holler T. P., Maloney L., Gogliotti R., Domagala J., Hupe D. The in vitro ejection of zinc from human immunodeficiency virus (HIV) type 1 nucleocapsid protein by disulfide benzamides with cellular anti-HIV activity. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):969–973. doi: 10.1073/pnas.93.3.969. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES