Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Feb;41(2):440–444. doi: 10.1128/aac.41.2.440

Expression of Escherichia coli TehA gives resistance to antiseptics and disinfectants similar to that conferred by multidrug resistance efflux pumps.

R J Turner 1, D E Taylor 1, J H Weiner 1
PMCID: PMC163726  PMID: 9021204

Abstract

The genes tehAB located at 32.3 min on the Escherichia coli chromosome were initially identified by their ability to mediate resistance to potassium tellurite (128 micrograms of K2TeO3 per ml) when overexpressed with a high-copy-number plasmid. The genes encode an integral membrane protein (TehA) of 36 kDa with 10 putative transmembrane segments and a second protein (TehB) of 23 kDa. Overexpression of TehAB results in hypersensitivity to dequalinium CI and methyl viologen (paraquat). Expression of TehA alone gives similar hypersensitivity. Overexpression of TehA gave resistance to tetraphenylarsonium CI, ethidium bromide, crystal violet and proflavin. The efflux of ethidium, measured by fluorescence quenching, revealed that TehA transported ethidium at twice the control rate and 10% of the rate of the highly resistant efflux transporter Emr Eco. Addition of tellurite had no effect on ethidium transport. In addition to the ethidium transport assay, a proflavin fluorescence assay which was approximately 200-fold more sensitive was also used. TehA was also found to have proflavin efflux activity. The addition of TeO32- to the proflavin transport assay on TehA caused a 20% increase in transport rate. Both ethidium and proflavin transport were found to be energy dependent.

Full Text

The Full Text of this article is available as a PDF (221.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ariza R. R., Cohen S. P., Bachhawat N., Levy S. B., Demple B. Repressor mutations in the marRAB operon that activate oxidative stress genes and multiple antibiotic resistance in Escherichia coli. J Bacteriol. 1994 Jan;176(1):143–148. doi: 10.1128/jb.176.1.143-148.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bishop R. E., Weiner J. H. Overproduction, solubilization, purification and DNA-binding properties of AmpR from Citrobacter freundii. Eur J Biochem. 1993 Apr 1;213(1):405–412. doi: 10.1111/j.1432-1033.1993.tb17775.x. [DOI] [PubMed] [Google Scholar]
  3. Boyer H. W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. doi: 10.1016/0022-2836(69)90288-5. [DOI] [PubMed] [Google Scholar]
  4. Cunningham R. P., Saporito S. M., Spitzer S. G., Weiss B. Endonuclease IV (nfo) mutant of Escherichia coli. J Bacteriol. 1986 Dec;168(3):1120–1127. doi: 10.1128/jb.168.3.1120-1127.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Feng D. F., Doolittle R. F. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol. 1987;25(4):351–360. doi: 10.1007/BF02603120. [DOI] [PubMed] [Google Scholar]
  7. Fürste J. P., Pansegrau W., Frank R., Blöcker H., Scholz P., Bagdasarian M., Lanka E. Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene. 1986;48(1):119–131. doi: 10.1016/0378-1119(86)90358-6. [DOI] [PubMed] [Google Scholar]
  8. Gambino L., Gracheck S. J., Miller P. F. Overexpression of the MarA positive regulator is sufficient to confer multiple antibiotic resistance in Escherichia coli. J Bacteriol. 1993 May;175(10):2888–2894. doi: 10.1128/jb.175.10.2888-2894.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grinius L. L., Goldberg E. B. Bacterial multidrug resistance is due to a single membrane protein which functions as a drug pump. J Biol Chem. 1994 Nov 25;269(47):29998–30004. [PubMed] [Google Scholar]
  10. Grinius L., Dreguniene G., Goldberg E. B., Liao C. H., Projan S. J. A staphylococcal multidrug resistance gene product is a member of a new protein family. Plasmid. 1992 Mar;27(2):119–129. doi: 10.1016/0147-619x(92)90012-y. [DOI] [PubMed] [Google Scholar]
  11. Henson J. M., Kopp B., Kuempel P. L. Deletion of 60 kilobase pairs of DNA from the terC region of the chromosome of Escherichia coli. Mol Gen Genet. 1984;193(2):263–268. doi: 10.1007/BF00330678. [DOI] [PubMed] [Google Scholar]
  12. Higgins C. F. The multidrug resistance P-glycoprotein. Curr Opin Cell Biol. 1993 Aug;5(4):684–687. doi: 10.1016/0955-0674(93)90140-l. [DOI] [PubMed] [Google Scholar]
  13. Lewis K. Multidrug resistance pumps in bacteria: variations on a theme. Trends Biochem Sci. 1994 Mar;19(3):119–123. doi: 10.1016/0968-0004(94)90204-6. [DOI] [PubMed] [Google Scholar]
  14. Littlejohn T. G., Paulsen I. T., Gillespie M. T., Tennent J. M., Midgley M., Jones I. G., Purewal A. S., Skurray R. A. Substrate specificity and energetics of antiseptic and disinfectant resistance in Staphylococcus aureus. FEMS Microbiol Lett. 1992 Aug 15;74(2-3):259–265. doi: 10.1016/0378-1097(92)90439-u. [DOI] [PubMed] [Google Scholar]
  15. Lomovskaya O., Lewis K. Emr, an Escherichia coli locus for multidrug resistance. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):8938–8942. doi: 10.1073/pnas.89.19.8938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lyon B. R., Skurray R. Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol Rev. 1987 Mar;51(1):88–134. doi: 10.1128/mr.51.1.88-134.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ma D., Cook D. N., Alberti M., Pon N. G., Nikaido H., Hearst J. E. Molecular cloning and characterization of acrA and acrE genes of Escherichia coli. J Bacteriol. 1993 Oct;175(19):6299–6313. doi: 10.1128/jb.175.19.6299-6313.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mead D. A., Szczesna-Skorupa E., Kemper B. Single-stranded DNA 'blue' T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. Protein Eng. 1986 Oct-Nov;1(1):67–74. doi: 10.1093/protein/1.1.67. [DOI] [PubMed] [Google Scholar]
  19. Midgley M. An efflux system for cationic dyes and related compounds in Escherichia coli. Microbiol Sci. 1987 Apr;4(4):125–127. [PubMed] [Google Scholar]
  20. Midgley M. The phosphonium ion efflux system of Escherichia coli: relationship to the ethidium efflux system and energetic studies. J Gen Microbiol. 1986 Nov;132(11):3187–3193. doi: 10.1099/00221287-132-11-3187. [DOI] [PubMed] [Google Scholar]
  21. Morimyo M., Hongo E., Hama-Inaba H., Machida I. Cloning and characterization of the mvrC gene of Escherichia coli K-12 which confers resistance against methyl viologen toxicity. Nucleic Acids Res. 1992 Jun 25;20(12):3159–3165. doi: 10.1093/nar/20.12.3159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Needleman S. B., Wunsch C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
  23. Neyfakh A. A., Bidnenko V. E., Chen L. B. Efflux-mediated multidrug resistance in Bacillus subtilis: similarities and dissimilarities with the mammalian system. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4781–4785. doi: 10.1073/pnas.88.11.4781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Neyfakh A. A., Borsch C. M., Kaatz G. W. Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter. Antimicrob Agents Chemother. 1993 Jan;37(1):128–129. doi: 10.1128/aac.37.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Paulsen I. T., Littlejohn T. G., Rådström P., Sundström L., Sköld O., Swedberg G., Skurray R. A. The 3' conserved segment of integrons contains a gene associated with multidrug resistance to antiseptics and disinfectants. Antimicrob Agents Chemother. 1993 Apr;37(4):761–768. doi: 10.1128/aac.37.4.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Paulsen I. T., Skurray R. A., Tam R., Saier M. H., Jr, Turner R. J., Weiner J. H., Goldberg E. B., Grinius L. L. The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. Mol Microbiol. 1996 Mar;19(6):1167–1175. doi: 10.1111/j.1365-2958.1996.tb02462.x. [DOI] [PubMed] [Google Scholar]
  27. Purewal A. S., Jones I. G., Midgley M. Cloning of the ethidium efflux gene from Escherichia coli. FEMS Microbiol Lett. 1990 Mar 1;56(1-2):73–76. doi: 10.1016/0378-1097(90)90127-c. [DOI] [PubMed] [Google Scholar]
  28. Purewal A. S. Nucleotide sequence of the ethidium efflux gene from Escherichia coli. FEMS Microbiol Lett. 1991 Aug 1;66(2):229–231. doi: 10.1016/0378-1097(91)90338-b. [DOI] [PubMed] [Google Scholar]
  29. Rouch D. A., Cram D. S., DiBerardino D., Littlejohn T. G., Skurray R. A. Efflux-mediated antiseptic resistance gene qacA from Staphylococcus aureus: common ancestry with tetracycline- and sugar-transport proteins. Mol Microbiol. 1990 Dec;4(12):2051–2062. doi: 10.1111/j.1365-2958.1990.tb00565.x. [DOI] [PubMed] [Google Scholar]
  30. Sasatsu M., Shima K., Shibata Y., Kono M. Nucleotide sequence of a gene that encodes resistance to ethidium bromide from a transferable plasmid in Staphylococcus aureus. Nucleic Acids Res. 1989 Dec 11;17(23):10103–10103. doi: 10.1093/nar/17.23.10103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Seoane A. S., Levy S. B. Identification of new genes regulated by the marRAB operon in Escherichia coli. J Bacteriol. 1995 Feb;177(3):530–535. doi: 10.1128/jb.177.3.530-535.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Strack B., Lessl M., Calendar R., Lanka E. A common sequence motif, -E-G-Y-A-T-A-, identified within the primase domains of plasmid-encoded I- and P-type DNA primases and the alpha protein of the Escherichia coli satellite phage P4. J Biol Chem. 1992 Jun 25;267(18):13062–13072. [PubMed] [Google Scholar]
  33. Taylor D. E., Hou Y., Turner R. J., Weiner J. H. Location of a potassium tellurite resistance operon (tehA tehB) within the terminus of Escherichia coli K-12. J Bacteriol. 1994 May;176(9):2740–2742. doi: 10.1128/jb.176.9.2740-2742.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Taylor D. E., Walter E. G., Sherburne R., Bazett-Jones D. P. Structure and location of tellurium deposited in Escherichia coli cells harbouring tellurite resistance plasmids. J Ultrastruct Mol Struct Res. 1988 Apr;99(1):18–26. doi: 10.1016/0889-1605(88)90029-8. [DOI] [PubMed] [Google Scholar]
  35. Tomás J. M., Kay W. W. Tellurite susceptibility and non-plasmid-mediated resistance in Escherichia coli. Antimicrob Agents Chemother. 1986 Jul;30(1):127–131. doi: 10.1128/aac.30.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Turner R. J., Weiner J. H. Evaluation of transmembrane helix prediction methods using the recently defined NMR structures of the coat proteins from bacteriophages M13 and Pf1. Biochim Biophys Acta. 1993 Sep 3;1202(1):161–168. doi: 10.1016/0167-4838(93)90078-6. [DOI] [PubMed] [Google Scholar]
  37. Turner R. J., Weiner J. H., Taylor D. E. Characterization of the growth inhibition phenotype of the kilAtelAB operon from IncP alpha plasmid RK2Ter. Biochem Cell Biol. 1994 Jul-Aug;72(7-8):333–342. doi: 10.1139/o94-046. [DOI] [PubMed] [Google Scholar]
  38. Turner R. J., Weiner J. H., Taylor D. E. In vivo complementation and site-specific mutagenesis of the tellurite resistance determinant kilAtelAB from IncP alpha plasmid RK2Ter. Microbiology. 1994 Jun;140(Pt 6):1319–1326. doi: 10.1099/00221287-140-6-1319. [DOI] [PubMed] [Google Scholar]
  39. Turner R. J., Weiner J. H., Taylor D. E. Neither reduced uptake nor increased efflux is encoded by tellurite resistance determinants expressed in Escherichia coli. Can J Microbiol. 1995 Jan;41(1):92–98. doi: 10.1139/m95-012. [DOI] [PubMed] [Google Scholar]
  40. Walter E. G., Taylor D. E. Comparison of tellurite resistance determinants from the IncP alpha plasmid RP4Ter and the IncHII plasmid pHH1508a. J Bacteriol. 1989 Apr;171(4):2160–2165. doi: 10.1128/jb.171.4.2160-2165.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Walter E. G., Taylor D. E. Plasmid-mediated resistance to tellurite: expressed and cryptic. Plasmid. 1992 Jan;27(1):52–64. doi: 10.1016/0147-619x(92)90006-v. [DOI] [PubMed] [Google Scholar]
  42. Walter E. G., Weiner J. H., Taylor D. E. Nucleotide sequence and overexpression of the tellurite-resistance determinant from the IncHII plasmid pHH1508a. Gene. 1991 May 15;101(1):1–7. doi: 10.1016/0378-1119(91)90217-y. [DOI] [PubMed] [Google Scholar]
  43. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  44. Yerushalmi H., Lebendiker M., Schuldiner S. EmrE, an Escherichia coli 12-kDa multidrug transporter, exchanges toxic cations and H+ and is soluble in organic solvents. J Biol Chem. 1995 Mar 24;270(12):6856–6863. doi: 10.1074/jbc.270.12.6856. [DOI] [PubMed] [Google Scholar]
  45. von Heijne G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol. 1992 May 20;225(2):487–494. doi: 10.1016/0022-2836(92)90934-c. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES