Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1978 Oct;26:169–174. doi: 10.1289/ehp.7826169

Myocardial metabolism for the toxicologist.

R G Merin
PMCID: PMC1637263  PMID: 720313

Abstract

Drug effects on myocardial contractile function are obviously of considerable practical importance for the toxicologist. The basic mechanism of such actions must reside at some point in the metabolism of cardiac muscle. Interference in the liberation of energy from the fuels that the heart uses may be implicated. It is possible that drugs may interfere with the storage (conservation) of that energy as the high energy phosphates (ATP and CP). Finally, the utilization of that stored energy by the contractile proteins themselves may be altered. The latter process is highly dependent on intracellular calcium ion kinetics. Anesthetic drugs, which produce reversible depression of myocardial contractile function is a dose-dependent fashion, have been shown to interfere to some extent with all three processes. However, the most important mechanism probably involves utilization of energy and intracellular calcium ion movement. A basic knowledge of the biochemistry of cardiac muscle is necessary for the understanding of drug action and toxicity at the subcellular level.

Full text

PDF
169

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aviado D. M. Drug action, reaction, and interaction. II. Iatrogenic cardiopathies. J Clin Pharmacol. 1975 Oct;15(10):641–655. doi: 10.1002/j.1552-4604.1975.tb05916.x. [DOI] [PubMed] [Google Scholar]
  2. Berman M. C., Kewley C. F., Kench J. E. Contribution of inhibition of NADH-dehydrogenase to the cardiotoxic effects of halothane. J Mol Cell Cardiol. 1974 Feb;6(1):39–47. doi: 10.1016/0022-2828(74)90005-4. [DOI] [PubMed] [Google Scholar]
  3. Curry R. C., Jr, Pepine C. J., Sabom M. B., Feldman R. L., Christie L. G., Conti C. R. Effects of ergonovine in patients with and without coronary artery disease. Circulation. 1977 Nov;56(5):803–809. doi: 10.1161/01.cir.56.5.803. [DOI] [PubMed] [Google Scholar]
  4. Deglin S. M., Deglin J. M., Chung E. K. Drug-induced cardiovascular diseases. Drugs. 1977 Jul;14(1):29–40. doi: 10.2165/00003495-197714010-00002. [DOI] [PubMed] [Google Scholar]
  5. Hamilton F. N., Feigl E. O. Coronary vascular sympathetic beta-receptor innervation. Am J Physiol. 1976 Jun;230(6):1569–1576. doi: 10.1152/ajplegacy.1976.230.6.1569. [DOI] [PubMed] [Google Scholar]
  6. Langer G. A. Ionic basis of myocardial contractility. Annu Rev Med. 1977;28:13–20. doi: 10.1146/annurev.me.28.020177.000305. [DOI] [PubMed] [Google Scholar]
  7. Merin R. G. Inhalation anesthetics and myocardial metabolism: possible mechanisms of functional effects. Anesthesiology. 1973 Aug;39(2):216–255. doi: 10.1097/00000542-197308000-00012. [DOI] [PubMed] [Google Scholar]
  8. Merin R. G., Kumazawa T., Honig C. R. Reversible interaction between halothane and Ca++ on cardiac actomyosin adenosine triphosphatase: mechanism and significance. J Pharmacol Exp Ther. 1974 Jul;190(1):1–14. [PubMed] [Google Scholar]
  9. Merin R. G., Kumazawa T., Luka N. L. Enflurane depresses myocardial function, perfusion, and metabolism in the dog. Anesthesiology. 1976 Nov;45(5):501–507. [PubMed] [Google Scholar]
  10. Merin R. G. Myocardial metabolism in the halothane-depressed canine heart. Anesthesiology. 1969 Jul;31(1):20–27. doi: 10.1097/00000542-196907000-00004. [DOI] [PubMed] [Google Scholar]
  11. Merin R. G. The relationship between myocardial function and glucose metabolism in the halothane-depressed heart. I. The effect of hyperglycemia. Anesthesiology. 1970 Oct;33(4):391–395. doi: 10.1097/00000542-197010000-00004. [DOI] [PubMed] [Google Scholar]
  12. Merin R. G., Verdouw P. D., de Jong J. W. Dose-dependent depression of cardiac function and metabolism by halothane in swine (Sus scrofa). Anesthesiology. 1977 Jun;46(6):417–423. doi: 10.1097/00000542-197706000-00008. [DOI] [PubMed] [Google Scholar]
  13. Mueller R. A., Smith R. D., Spruill W. A., Breese G. R. Central monaminergic neuronal effects on minimum alveolar concentrations (MAC) of halothane and cyclopropane in rats. Anesthesiology. 1975 Feb;42(2):143–152. doi: 10.1097/00000542-197502000-00006. [DOI] [PubMed] [Google Scholar]
  14. OLSON R. E., PIATNEK D. A. Conservation of energy in cardiac muscle. Ann N Y Acad Sci. 1959 Feb 6;72(12):466–479. doi: 10.1111/j.1749-6632.1959.tb44175.x. [DOI] [PubMed] [Google Scholar]
  15. Olson R. E., Dhalla N. S., Sun C. N. Changes in energy stores in the hypoxic heart. Cardiology. 1971;56(1):114–124. doi: 10.1159/000169351. [DOI] [PubMed] [Google Scholar]
  16. Scheuer J., McDonald R. H. Current status of myocardial mechanical-energetic relationships. Mt Sinai J Med. 1970 May-Jun;37(3):311–330. [PubMed] [Google Scholar]
  17. TOPKINS M. J., ARTUSIO J. F., Jr MYOCARDIAL INFARCTION AND SURGERY: A FIVE YEAR STUDY. Anesth Analg. 1964 Nov-Dec;43:716–720. [PubMed] [Google Scholar]
  18. Tarhan S., Moffitt E. A., Taylor W. F., Giuliani E. R. Myocardial infarction after general anesthesia. JAMA. 1972 Jun 12;220(11):1451–1454. [PubMed] [Google Scholar]
  19. Waters D. D., Forrester J. S. Myocardial ischemia: detection and quantitation. Ann Intern Med. 1978 Feb;88(2):239–250. doi: 10.7326/0003-4819-88-2-239. [DOI] [PubMed] [Google Scholar]
  20. de Jong J. W., Verdouw P. D., Remme W. J. Myocardial nucleoside and carbohydrate metabolism and hemodynamics during partial occlusion and reperfusion of pig coronary artery. J Mol Cell Cardiol. 1977 Apr;9(4):297–312. doi: 10.1016/s0022-2828(77)80036-9. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES