Abstract
Ketolides, a novel macrolide subclass, possess a mode of action that is similar to that of structurally related macrolide-lincosamide-streptogramin (MLS) compounds. By using reference in vitro tests, the in vitro activity of RU-64004 was compared to those of six other MLS compounds against more than 800 clinical pathogens, including 356 gram-positive organisms. The spectrum of activity of the ketolide was most similar to that of clindamycin versus staphylococci and streptococci and superior to those of all macrolides tested against oxacillin-resistant staphylococci and vancomycin-resistant (vanA, vanB, and vanC) enterococcal isolates. The activity of the ketolide was greater than those of the macrolides, azalides, or clindamycin tested against vancomycin-susceptible enterococci (MICs at which 90% of isolates are inhibited [MIC90S], 0.25 to 4 micrograms/ml), penicillin-resistant pneumococci (MIC90, 0.25 micrograms/ml), and most beta-hemolytic streptococci. All Streptococcus pneumoniae and beta-hemolytic streptococcus strain were inhibited by ketolide concentrations of < or = 0.25 micrograms/ml. Against 165 erythromycin-resistant strains, RU-64004 inhibited (MICs, < or = 0.5 micrograms/ml) approximately one-third of staphylococci, all streptococci, and slightly more than one-half of the enterococci. Quinupristin-dalfopristin (a streptogramin combination) was active against all tested isolates with the exception of non-Enterococcus faecium enterococci, against which the ketolide exhibited greater potency (MIC50S, 0.03 to 2 micrograms/ml). The ketolide was also active against Haemophilus influenzae (MIC90, 2 micrograms/ml), Moraxella catarrhalis (MIC90, 0.12 micrograms/ml), pathogenic Neisseria spp. (MIC90, 0.5 micrograms/ml), and many gram-positive anaerobes (MIC90, 0.5 micrograms/ml). RU-64004 may enhance the role of macrolide drugs in the treatment of some serious infections caused by MLS-resistant gram-positive organisms.
Full Text
The Full Text of this article is available as a PDF (226.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cormican M. G., Jones R. N. Emerging resistance to antimicrobial agents in gram-positive bacteria. Enterococci, staphylococci and nonpneumococcal streptococci. Drugs. 1996;51 (Suppl 1):6–12. doi: 10.2165/00003495-199600511-00004. [DOI] [PubMed] [Google Scholar]
- Jones R. N., Johnson D. M., Erwin M. E. In vitro antimicrobial activities and spectra of U-100592 and U-100766, two novel fluorinated oxazolidinones. Antimicrob Agents Chemother. 1996 Mar;40(3):720–726. doi: 10.1128/aac.40.3.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leclercq R., Courvalin P. Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob Agents Chemother. 1991 Jul;35(7):1267–1272. doi: 10.1128/aac.35.7.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanchez M. L., Flint K. K., Jones R. N. Occurrence of macrolide-lincosamide-streptogramin resistances among staphylococcal clinical isolates at a university medical center. Is false susceptibility to new macrolides and clindamycin a contemporary clinical and in vitro testing problem? Diagn Microbiol Infect Dis. 1993 Mar-Apr;16(3):205–213. doi: 10.1016/0732-8893(93)90111-j. [DOI] [PubMed] [Google Scholar]
- Sato K., Hoshino K., Tanaka M., Hayakawa I., Osada Y. Antimicrobial activity of DU-6859, a new potent fluoroquinolone, against clinical isolates. Antimicrob Agents Chemother. 1992 Jul;36(7):1491–1498. doi: 10.1128/aac.36.7.1491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tally F. T., Ellestad G. A., Testa R. T. Glycylcyclines: a new generation of tetracyclines. J Antimicrob Chemother. 1995 Apr;35(4):449–452. doi: 10.1093/jac/35.4.449. [DOI] [PubMed] [Google Scholar]