Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Mar;41(3):497–503. doi: 10.1128/aac.41.3.497

The search for antimicrobial agents effective against bacteria resistant to multiple antibiotics.

I Chopra 1, J Hodgson 1, B Metcalf 1, G Poste 1
PMCID: PMC163740  PMID: 9055982

Full Text

The Full Text of this article is available as a PDF (102.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arthur M., Courvalin P. Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob Agents Chemother. 1993 Aug;37(8):1563–1571. doi: 10.1128/aac.37.8.1563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Briat J. F. Iron assimilation and storage in prokaryotes. J Gen Microbiol. 1992 Dec;138(12):2475–2483. doi: 10.1099/00221287-138-12-2475. [DOI] [PubMed] [Google Scholar]
  3. Camilli A., Beattie D. T., Mekalanos J. J. Use of genetic recombination as a reporter of gene expression. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2634–2638. doi: 10.1073/pnas.91.7.2634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chopra I. Efflux-based antibiotic resistance mechanisms: the evidence for increasing prevalence. J Antimicrob Chemother. 1992 Dec;30(6):737–739. doi: 10.1093/jac/30.6.737. [DOI] [PubMed] [Google Scholar]
  5. Chopra I., Hodgson J., Metcalf B., Poste G. New approaches to the control of infections caused by antibiotic-resistant bacteria. An industry perspective. JAMA. 1996 Feb 7;275(5):401–403. [PubMed] [Google Scholar]
  6. Chuang S. E., Daniels D. L., Blattner F. R. Global regulation of gene expression in Escherichia coli. J Bacteriol. 1993 Apr;175(7):2026–2036. doi: 10.1128/jb.175.7.2026-2036.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cohen M. L. Epidemiology of drug resistance: implications for a post-antimicrobial era. Science. 1992 Aug 21;257(5073):1050–1055. doi: 10.1126/science.257.5073.1050. [DOI] [PubMed] [Google Scholar]
  8. Coleman K., Athalye M., Clancey A., Davison M., Payne D. J., Perry C. R., Chopra I. Bacterial resistance mechanisms as therapeutic targets. J Antimicrob Chemother. 1994 Jun;33(6):1091–1116. doi: 10.1093/jac/33.6.1091. [DOI] [PubMed] [Google Scholar]
  9. Culotta E. Funding crunch hobbles antibiotic resistance research. Science. 1994 Apr 15;264(5157):362–363. doi: 10.1126/science.8153617. [DOI] [PubMed] [Google Scholar]
  10. Donnelly J. P., Voss A., Witte W., Murray B. E. Does the use in animals of antimicrobial agents, including glycopeptide antibiotics, influence the efficacy of antimicrobial therapy in humans? J Antimicrob Chemother. 1996 Feb;37(2):389–392. doi: 10.1093/jac/37.2.389. [DOI] [PubMed] [Google Scholar]
  11. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  12. Fraser C. M., Gocayne J. D., White O., Adams M. D., Clayton R. A., Fleischmann R. D., Bult C. J., Kerlavage A. R., Sutton G., Kelley J. M. The minimal gene complement of Mycoplasma genitalium. Science. 1995 Oct 20;270(5235):397–403. doi: 10.1126/science.270.5235.397. [DOI] [PubMed] [Google Scholar]
  13. Goward C. R., Scawen M. D., Murphy J. P., Atkinson T. Molecular evolution of bacterial cell-surface proteins. Trends Biochem Sci. 1993 Apr;18(4):136–140. doi: 10.1016/0968-0004(93)90021-e. [DOI] [PubMed] [Google Scholar]
  14. Hammond S. M., Claesson A., Jansson A. M., Larsson L. G., Pring B. G., Town C. M., Ekström B. A new class of synthetic antibacterials acting on lipopolysaccharide biosynthesis. 1987 Jun 25-Jul 1Nature. 327(6124):730–732. doi: 10.1038/327730a0. [DOI] [PubMed] [Google Scholar]
  15. Hensel M., Shea J. E., Gleeson C., Jones M. D., Dalton E., Holden D. W. Simultaneous identification of bacterial virulence genes by negative selection. Science. 1995 Jul 21;269(5222):400–403. doi: 10.1126/science.7618105. [DOI] [PubMed] [Google Scholar]
  16. Hughes J., Mellows G. Inhibition of isoleucyl-transfer ribonucleic acid synthetase in Escherichia coli by pseudomonic acid. Biochem J. 1978 Oct 15;176(1):305–318. doi: 10.1042/bj1760305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hughes J., Mellows G. On the mode of action of pseudomonic acid: inhibition of protein synthesis in Staphylococcus aureus. J Antibiot (Tokyo) 1978 Apr;31(4):330–335. doi: 10.7164/antibiotics.31.330. [DOI] [PubMed] [Google Scholar]
  18. Jones R. N., Johnson D. M., Erwin M. E. In vitro antimicrobial activities and spectra of U-100592 and U-100766, two novel fluorinated oxazolidinones. Antimicrob Agents Chemother. 1996 Mar;40(3):720–726. doi: 10.1128/aac.40.3.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kaatz G. W., Seo S. M. In vitro activities of oxazolidinone compounds U100592 and U100766 against Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother. 1996 Mar;40(3):799–801. doi: 10.1128/aac.40.3.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kikuta-Oshima L. C., King C. H., Shinnick T. M., Quinn F. D. Methods for the identification of virulence genes expressed in Mycobacterium tuberculosis strain H37Rv. Ann N Y Acad Sci. 1994 Aug 15;730:263–265. doi: 10.1111/j.1749-6632.1994.tb44260.x. [DOI] [PubMed] [Google Scholar]
  21. Kopp U., Roos M., Wecke J., Labischinski H. Staphylococcal peptidoglycan interpeptide bridge biosynthesis: a novel antistaphylococcal target? Microb Drug Resist. 1996 Spring;2(1):29–41. doi: 10.1089/mdr.1996.2.29. [DOI] [PubMed] [Google Scholar]
  22. Kunin C. M. Resistance to antimicrobial drugs--a worldwide calamity. Ann Intern Med. 1993 Apr 1;118(7):557–561. doi: 10.7326/0003-4819-118-7-199304010-00011. [DOI] [PubMed] [Google Scholar]
  23. Levy S. B. Active efflux mechanisms for antimicrobial resistance. Antimicrob Agents Chemother. 1992 Apr;36(4):695–703. doi: 10.1128/aac.36.4.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Livermore D. M. Carbapenemases. J Antimicrob Chemother. 1992 Jun;29(6):609–613. doi: 10.1093/jac/29.6.609. [DOI] [PubMed] [Google Scholar]
  25. Ma D., Cook D. N., Alberti M., Pon N. G., Nikaido H., Hearst J. E. Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol Microbiol. 1995 Apr;16(1):45–55. doi: 10.1111/j.1365-2958.1995.tb02390.x. [DOI] [PubMed] [Google Scholar]
  26. Mahan M. J., Slauch J. M., Hanna P. C., Camilli A., Tobias J. W., Waldor M. K., Mekalanos J. J. Selection for bacterial genes that are specifically induced in host tissues: the hunt for virulence factors. Infect Agents Dis. 1993 Aug;2(4):263–268. [PubMed] [Google Scholar]
  27. Mahan M. J., Slauch J. M., Mekalanos J. J. Selection of bacterial virulence genes that are specifically induced in host tissues. Science. 1993 Jan 29;259(5095):686–688. doi: 10.1126/science.8430319. [DOI] [PubMed] [Google Scholar]
  28. Mahan M. J., Tobias J. W., Slauch J. M., Hanna P. C., Collier R. J., Mekalanos J. J. Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):669–673. doi: 10.1073/pnas.92.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Malanoski G., Collins L., Eliopoulos C. T., Moellering R. C., Jr, Eliopoulos G. M. Comparative in vitro activities of L-695,256, a novel carbapenem, against gram-positive bacteria. Antimicrob Agents Chemother. 1995 Apr;39(4):990–995. doi: 10.1128/aac.39.4.990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Moellering R. C., Jr, Eliopoulos G. M., Sentochnik D. E. The carbapenems: new broad spectrum beta-lactam antibiotics. J Antimicrob Chemother. 1989 Sep;24 (Suppl A):1–7. doi: 10.1093/jac/24.suppl_a.1. [DOI] [PubMed] [Google Scholar]
  31. Navarre W. W., Schneewind O. Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in gram-positive bacteria. Mol Microbiol. 1994 Oct;14(1):115–121. doi: 10.1111/j.1365-2958.1994.tb01271.x. [DOI] [PubMed] [Google Scholar]
  32. Neu H. C. The crisis in antibiotic resistance. Science. 1992 Aug 21;257(5073):1064–1073. doi: 10.1126/science.257.5073.1064. [DOI] [PubMed] [Google Scholar]
  33. Nicas T. I., Mullen D. L., Flokowitsch J. E., Preston D. A., Snyder N. J., Stratford R. E., Cooper R. D. Activities of the semisynthetic glycopeptide LY191145 against vancomycin-resistant enterococci and other gram-positive bacteria. Antimicrob Agents Chemother. 1995 Nov;39(11):2585–2587. doi: 10.1128/aac.39.11.2585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Omura S. Thom Award Lecture. Trends in the search for bioactive microbial metabolites. J Ind Microbiol. 1992 Sep;10(3-4):135–156. doi: 10.1007/BF01569759. [DOI] [PubMed] [Google Scholar]
  35. Osbourn A. E., Barber C. E., Daniels M. J. Identification of plant-induced genes of the bacterial pathogen Xanthomonas campestris pathovar campestris using a promoter-probe plasmid. EMBO J. 1987 Jan;6(1):23–28. doi: 10.1002/j.1460-2075.1987.tb04713.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Piddock L. J. Does the use of antimicrobial agents in veterinary medicine and animal husbandry select antibiotic-resistant bacteria that infect man and compromise antimicrobial chemotherapy? J Antimicrob Chemother. 1996 Jul;38(1):1–3. doi: 10.1093/jac/38.1.1. [DOI] [PubMed] [Google Scholar]
  37. Plum G., Clark-Curtiss J. E. Induction of Mycobacterium avium gene expression following phagocytosis by human macrophages. Infect Immun. 1994 Feb;62(2):476–483. doi: 10.1128/iai.62.2.476-483.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rankin S., Isberg R. R. Identification of Legionella pneumophila promoters regulated by the macrophage intracellular environment. Infect Agents Dis. 1993 Aug;2(4):269–271. [PubMed] [Google Scholar]
  39. Rasmussen B. A., Gluzman Y., Tally F. P. Inhibition of protein synthesis occurring on tetracycline-resistant, TetM-protected ribosomes by a novel class of tetracyclines, the glycylcyclines. Antimicrob Agents Chemother. 1994 Jul;38(7):1658–1660. doi: 10.1128/aac.38.7.1658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Reading C., Cole M. Clavulanic acid: a beta-lactamase-inhiting beta-lactam from Streptomyces clavuligerus. Antimicrob Agents Chemother. 1977 May;11(5):852–857. doi: 10.1128/aac.11.5.852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sabath L. D., Garner C., Wilcox C., Finland M. Effect of inoculum and of beta-lactamase on the anti-staphylococcal activity of thirteen penicillins and cephalosporins. Antimicrob Agents Chemother. 1975 Sep;8(3):344–349. doi: 10.1128/aac.8.3.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schena M., Shalon D., Davis R. W., Brown P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995 Oct 20;270(5235):467–470. doi: 10.1126/science.270.5235.467. [DOI] [PubMed] [Google Scholar]
  43. Shaw W. V. Bacterial resistance to chloramphenicol. Br Med Bull. 1984 Jan;40(1):36–41. doi: 10.1093/oxfordjournals.bmb.a071945. [DOI] [PubMed] [Google Scholar]
  44. Slee A. M., Wuonola M. A., McRipley R. J., Zajac I., Zawada M. J., Bartholomew P. T., Gregory W. A., Forbes M. Oxazolidinones, a new class of synthetic antibacterial agents: in vitro and in vivo activities of DuP 105 and DuP 721. Antimicrob Agents Chemother. 1987 Nov;31(11):1791–1797. doi: 10.1128/aac.31.11.1791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Someya Y., Yamaguchi A., Sawai T. A novel glycylcycline, 9-(N,N-dimethylglycylamido)-6-demethyl-6-deoxytetracycline, is neither transported nor recognized by the transposon Tn10-encoded metal-tetracycline/H+ antiporter. Antimicrob Agents Chemother. 1995 Jan;39(1):247–249. doi: 10.1128/aac.39.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Soothill J. S. Treatment of experimental infections of mice with bacteriophages. J Med Microbiol. 1992 Oct;37(4):258–261. doi: 10.1099/00222615-37-4-258. [DOI] [PubMed] [Google Scholar]
  47. Spangler S. K., Jacobs M. R., Appelbaum P. C. Activities of RPR 106972 (a new oral streptogramin), cefditoren (a new oral cephalosporin), two new oxazolidinones (U-100592 and U-100766), and other oral and parenteral agents against 203 penicillin-susceptible and -resistant pneumococci. Antimicrob Agents Chemother. 1996 Feb;40(2):481–484. doi: 10.1128/aac.40.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sumita Y., Nouda H., Kanazawa K., Fukasawa M. Antimicrobial activity of SM-17466, a novel carbapenem antibiotic with potent activity against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1995 Apr;39(4):910–916. doi: 10.1128/aac.39.4.910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Swartz M. N. Hospital-acquired infections: diseases with increasingly limited therapies. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2420–2427. doi: 10.1073/pnas.91.7.2420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sykes R. B., Bonner D. P. Counteracting antibiotic resistance: new drugs. Br Med Bull. 1984 Jan;40(1):96–101. doi: 10.1093/oxfordjournals.bmb.a071954. [DOI] [PubMed] [Google Scholar]
  51. Tally F. T., Ellestad G. A., Testa R. T. Glycylcyclines: a new generation of tetracyclines. J Antimicrob Chemother. 1995 Apr;35(4):449–452. doi: 10.1093/jac/35.4.449. [DOI] [PubMed] [Google Scholar]
  52. Tenover F. C., Hughes J. M. The challenges of emerging infectious diseases. Development and spread of multiply-resistant bacterial pathogens. JAMA. 1996 Jan 24;275(4):300–304. [PubMed] [Google Scholar]
  53. Tomasz A. Multiple-antibiotic-resistant pathogenic bacteria. A report on the Rockefeller University Workshop. N Engl J Med. 1994 Apr 28;330(17):1247–1251. doi: 10.1056/NEJM199404283301725. [DOI] [PubMed] [Google Scholar]
  54. Tuckman M. K., Chopra I., Osburne M. S. An assay to detect inhibitors of bacterial iron transport. J Antibiot (Tokyo) 1994 Jan;47(1):123–125. doi: 10.7164/antibiotics.47.123. [DOI] [PubMed] [Google Scholar]
  55. Utt E. A., Brousal J. P., Kikuta-Oshima L. C., Quinn F. D. The identification of bacterial gene expression differences using mRNA-based isothermal subtractive hybridization. Can J Microbiol. 1995 Feb;41(2):152–156. doi: 10.1139/m95-020. [DOI] [PubMed] [Google Scholar]
  56. Utt E. A., Quinn F. D. mRNA subtractive hybridization for the isolation and identification of tissue culture-induced determinants from Haemophilus influenzae biogroup aegyptius, the causative agent of Brazilian purpuric fever. Ann N Y Acad Sci. 1994 Aug 15;730:269–272. doi: 10.1111/j.1749-6632.1994.tb44262.x. [DOI] [PubMed] [Google Scholar]
  57. Welsh J., Chada K., Dalal S. S., Cheng R., Ralph D., McClelland M. Arbitrarily primed PCR fingerprinting of RNA. Nucleic Acids Res. 1992 Oct 11;20(19):4965–4970. doi: 10.1093/nar/20.19.4965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Wilson J. M., Oliva B., Cassels R., O'Hanlon P. J., Chopra I. SB 205952, a novel semisynthetic monic acid analog with at least two modes of action. Antimicrob Agents Chemother. 1995 Sep;39(9):1925–1933. doi: 10.1128/aac.39.9.1925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Wong K. K., McClelland M. Stress-inducible gene of Salmonella typhimurium identified by arbitrarily primed PCR of RNA. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):639–643. doi: 10.1073/pnas.91.2.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Yang Y., Bhachech N., Bush K. Biochemical comparison of imipenem, meropenem and biapenem: permeability, binding to penicillin-binding proteins, and stability to hydrolysis by beta-lactamases. J Antimicrob Chemother. 1995 Jan;35(1):75–84. doi: 10.1093/jac/35.1.75. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES