Abstract
Subinhibitory concentrations of clavulanate caused premature induction of stationary-phase autolysis, sensitization to lysozyme, and reductions in the MICs of deoxycholate and penicillin for Streptococcus pneumoniae. In the range of clavulanate concentrations producing these effects, this beta-lactam compound was selectively bound to PBP 3. Cell walls isolated from pneumococci grown in the presence of clavulanate showed increased sensitivity to the hydrolytic action of purified pneumococcal autolysin in vitro. High-performance liquid chromatography analysis of the peptidoglycan isolated from the clavulanate-grown cells showed major qualitative and quantitative changes in stem peptide composition, the most striking feature of which was the accumulation of peptide species carrying intact D-alanyl-D-alanine residues at the carboxy termini. The altered biological and biochemical properties of the clavulanate-grown pneumococci appear to be the consequences of suppressed D,D-carboxypeptidase activity.
Full Text
The Full Text of this article is available as a PDF (465.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cottagnoud P., Tomasz A. Triggering of pneumococcal autolysis by lysozyme. J Infect Dis. 1993 Mar;167(3):684–690. doi: 10.1093/infdis/167.3.684. [DOI] [PubMed] [Google Scholar]
- Garcia-Bustos J. F., Chait B. T., Tomasz A. Structure of the peptide network of pneumococcal peptidoglycan. J Biol Chem. 1987 Nov 15;262(32):15400–15405. [PubMed] [Google Scholar]
- Garcia-Bustos J. F., Tomasz A. Teichoic acid-containing muropeptides from Streptococcus pneumoniae as substrates for the pneumococcal autolysin. J Bacteriol. 1987 Feb;169(2):447–453. doi: 10.1128/jb.169.2.447-453.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garcia-Bustos J., Tomasz A. A biological price of antibiotic resistance: major changes in the peptidoglycan structure of penicillin-resistant pneumococci. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5415–5419. doi: 10.1073/pnas.87.14.5415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- García E., García J. L., Ronda C., García P., López R. Cloning and expression of the pneumococcal autolysin gene in Escherichia coli. Mol Gen Genet. 1985;201(2):225–230. doi: 10.1007/BF00425663. [DOI] [PubMed] [Google Scholar]
- García J. L., Sánchez-Puelles J. M., García P., López R., Ronda C., García E. Molecular characterization of an autolysin-defective mutant of Streptococcus pneumoniae. Biochem Biophys Res Commun. 1986 Jun 13;137(2):614–619. doi: 10.1016/0006-291x(86)91122-8. [DOI] [PubMed] [Google Scholar]
- Ghuysen J. M., Charlier P., Coyette J., Duez C., Fonzé E., Fraipont C., Goffin C., Joris B., Nguyen-Distèche M. Penicillin and beyond: evolution, protein fold, multimodular polypeptides, and multiprotein complexes. Microb Drug Resist. 1996 Summer;2(2):163–175. doi: 10.1089/mdr.1996.2.163. [DOI] [PubMed] [Google Scholar]
- Goldstein F. W., Kitzis M. D., Acar J. F. Effect of clavulanic acid and amoxycillin formulation against beta-lactamase producing Gram-negative bacteria in urinary tract infections. J Antimicrob Chemother. 1979 Nov;5(6):705–709. doi: 10.1093/jac/5.6.705. [DOI] [PubMed] [Google Scholar]
- Greenwood D., O'Grady F., Baker P. An in vitro evaluation of clavulanic acid, a potent, broad-spectrum beta-lactamase inhibitor. J Antimicrob Chemother. 1979 Sep;5(5):539–547. doi: 10.1093/jac/5.5.539. [DOI] [PubMed] [Google Scholar]
- Hakenbeck R., Kohiyama M. Purification of penicillin-binding protein 3 from Streptococcus pneumoniae. Eur J Biochem. 1982 Oct;127(2):231–236. doi: 10.1111/j.1432-1033.1982.tb06860.x. [DOI] [PubMed] [Google Scholar]
- Hakenbeck R., Tornette S., Adkinson N. F. Interaction of non-lytic beta-lactams with penicillin-binding proteins in Streptococcus pneumoniae. J Gen Microbiol. 1987 Mar;133(3):755–760. doi: 10.1099/00221287-133-3-755. [DOI] [PubMed] [Google Scholar]
- Höltje J. V., Tomasz A. Specific recognition of choline residues in the cell wall teichoic acid by the N-acetylmuramyl-L-alanine amidase of Pneumococcus. J Biol Chem. 1975 Aug 10;250(15):6072–6076. [PubMed] [Google Scholar]
- Jabes D., Nachman S., Tomasz A. Penicillin-binding protein families: evidence for the clonal nature of penicillin resistance in clinical isolates of pneumococci. J Infect Dis. 1989 Jan;159(1):16–25. doi: 10.1093/infdis/159.1.16. [DOI] [PubMed] [Google Scholar]
- Jabes D., Tomasz A. Lytic and bactericidal activity of FCE 22101. J Antimicrob Chemother. 1989 Mar;23 (Suppl 100):75–83. doi: 10.1093/jac/23.suppl_c.75. [DOI] [PubMed] [Google Scholar]
- Klockars M., Reitamo S., Weber T., Kerttula Y. Cerebrospinal fluid lysozyme in bacterial and viral meningitis. Acta Med Scand. 1978;203(1-2):71–74. doi: 10.1111/j.0954-6820.1978.tb14834.x. [DOI] [PubMed] [Google Scholar]
- LACKS S., HOTCHKISS R. D. A study of the genetic material determining an enzyme in Pneumococcus. Biochim Biophys Acta. 1960 Apr 22;39:508–518. doi: 10.1016/0006-3002(60)90205-5. [DOI] [PubMed] [Google Scholar]
- Munoz R., Musser J. M., Crain M., Briles D. E., Marton A., Parkinson A. J., Sorensen U., Tomasz A. Geographic distribution of penicillin-resistant clones of Streptococcus pneumoniae: characterization by penicillin-binding protein profile, surface protein A typing, and multilocus enzyme analysis. Clin Infect Dis. 1992 Jul;15(1):112–118. doi: 10.1093/clinids/15.1.112. [DOI] [PubMed] [Google Scholar]
- Nonomura N., Giebink G. S., Juhn S. K., Harada T., Aeppli D. Pathophysiology of Streptococcus pneumoniae otitis media: kinetics of the middle ear biochemical and cytologic host responses. Ann Otol Rhinol Laryngol. 1991 Mar;100(3):236–243. doi: 10.1177/000348949110000313. [DOI] [PubMed] [Google Scholar]
- Pozzi G., Oggioni M. R., Tomasz A. DNA probe for identification of Streptococcus pneumoniae. J Clin Microbiol. 1989 Feb;27(2):370–372. doi: 10.1128/jcm.27.2.370-372.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schuster C., Dobrinski B., Hakenbeck R. Unusual septum formation in Streptococcus pneumoniae mutants with an alteration in the D,D-carboxypeptidase penicillin-binding protein 3. J Bacteriol. 1990 Nov;172(11):6499–6505. doi: 10.1128/jb.172.11.6499-6505.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Selakovitch-Chenu L., Seroude L., Sicard A. M. The role of penicillin-binding protein 3 (PBP 3) in cefotaxime resistance in Streptococcus pneumoniae. Mol Gen Genet. 1993 May;239(1-2):77–80. doi: 10.1007/BF00281604. [DOI] [PubMed] [Google Scholar]
- Severin A., Schuster C., Hakenbeck R., Tomasz A. Altered murein composition in a DD-carboxypeptidase mutant of Streptococcus pneumoniae. J Bacteriol. 1992 Aug;174(15):5152–5155. doi: 10.1128/jb.174.15.5152-5155.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Severin A., Tomasz A. Naturally occurring peptidoglycan variants of Streptococcus pneumoniae. J Bacteriol. 1996 Jan;178(1):168–174. doi: 10.1128/jb.178.1.168-174.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutherland R., Beale A. S., Boon R. J., Griffin K. E., Slocombe B., Stokes D. H., White A. R. Antibacterial activity of ticarcillin in the presence of clavulanate potassium. Am J Med. 1985 Nov 29;79(5B):13–24. doi: 10.1016/0002-9343(85)90124-x. [DOI] [PubMed] [Google Scholar]
- Tomasz A. The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Annu Rev Microbiol. 1979;33:113–137. doi: 10.1146/annurev.mi.33.100179.000553. [DOI] [PubMed] [Google Scholar]
- Wise R., Andrews J. M., Bedford K. A. In vitro study of clavulanic acid in combination with penicillin, amoxycillin, and carbenicillin. Antimicrob Agents Chemother. 1978 Mar;13(3):389–393. doi: 10.1128/aac.13.3.389. [DOI] [PMC free article] [PubMed] [Google Scholar]