Abstract
The hydroxyethylurea human immunodeficiency virus type 1 (HIV-1) protease inhibitors SC-55389A and SC-52151 were used to select drug-resistant variants in vitro. One clinical HIV-1 strain (89-959) and one laboratory HIV-1 strain (LAI) were passaged in peripheral blood mononuclear cells or CEMT4 cells in the presence of SC-55389A. Resistant isolates from both strains consistently had a mutation to serine for asparagine at amino acid 88 (N88S) in the protease gene either alone or in combination with a change to phenylalanine at position 10. The N88S mutation, recreated by oligonucleotide-mediated site-directed mutagenesis in HXB2, was sufficient to confer resistance to SC-55389A. In contrast, SC-52151-resistant variants selected from the monocytotropic strain SF162 had multiple substitutions in the protease gene (I11V, M461, F53L, A71V, and N88D), and the N88D mutation, re-created by oligonucleotide-mediated site-directed mutagenesis in HXB2, did not confer resistance to SC-52151. The potencies of L735,524 and Ro31-8959 were not reduced when these compounds were assayed against variants with either the N88S or N88D substitution. Position 88 is in a helix that lies behind the substrate binding pocket and may indirectly influence inhibitor binding through interactions with the amino acid at position 31. The selected mutations were persistent in the viral populations after more than 20 passages in the absence of drugs. Passaging of virus first in SC-55389A alone and then in combination with SC-52151 resulted in the accumulation of more mutations in the protease gene (L10F, D35E, D37M, I47V, 154L, A71V, V82I, and S88D) and in the selection of a variant that was cross-resistant to multiple protease inhibitors. These results indicate that a mutation in the HIV-1 protease at a position that is located outside of the substrate binding pocket confers resistance to a protease inhibitor and that mutations in the protease gene accumulate with increasing selection pressure and can persist in the absence of selection pressure.
Full Text
The Full Text of this article is available as a PDF (259.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bryant M., Getman D., Smidt M., Marr J., Clare M., Dillard R., Lansky D., DeCrescenzo G., Heintz R., Houseman K. SC-52151, a novel inhibitor of the human immunodeficiency virus protease. Antimicrob Agents Chemother. 1995 Oct;39(10):2229–2234. doi: 10.1128/aac.39.10.2229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Z., Li Y., Schock H. B., Hall D., Chen E., Kuo L. C. Three-dimensional structure of a mutant HIV-1 protease displaying cross-resistance to all protease inhibitors in clinical trials. J Biol Chem. 1995 Sep 15;270(37):21433–21436. doi: 10.1074/jbc.270.37.21433. [DOI] [PubMed] [Google Scholar]
- Coffin J. M. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science. 1995 Jan 27;267(5197):483–489. doi: 10.1126/science.7824947. [DOI] [PubMed] [Google Scholar]
- Condra J. H., Schleif W. A., Blahy O. M., Gabryelski L. J., Graham D. J., Quintero J. C., Rhodes A., Robbins H. L., Roth E., Shivaprakash M. In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors. Nature. 1995 Apr 6;374(6522):569–571. doi: 10.1038/374569a0. [DOI] [PubMed] [Google Scholar]
- DeLean A., Munson P. J., Rodbard D. Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am J Physiol. 1978 Aug;235(2):E97–102. doi: 10.1152/ajpendo.1978.235.2.E97. [DOI] [PubMed] [Google Scholar]
- Erickson J. W. The not-so-great escape. Nat Struct Biol. 1995 Jul;2(7):523–529. doi: 10.1038/nsb0795-523. [DOI] [PubMed] [Google Scholar]
- Getman D. P., DeCrescenzo G. A., Heintz R. M., Reed K. L., Talley J. J., Bryant M. L., Clare M., Houseman K. A., Marr J. J., Mueller R. A. Discovery of a novel class of potent HIV-1 protease inhibitors containing the (R)-(hydroxyethyl)urea isostere. J Med Chem. 1993 Jan 22;36(2):288–291. doi: 10.1021/jm00054a014. [DOI] [PubMed] [Google Scholar]
- Guenet C., Leppik R. A., Pelton J. T., Moelling K., Lovenberg W., Harris B. A. HIV-1 protease: mutagenesis of asparagine 88 indicates a domain required for dimer formation. Eur J Pharmacol. 1989 Dec 5;172(6):443–451. doi: 10.1016/0922-4106(89)90027-8. [DOI] [PubMed] [Google Scholar]
- Holland J., Spindler K., Horodyski F., Grabau E., Nichol S., VandePol S. Rapid evolution of RNA genomes. Science. 1982 Mar 26;215(4540):1577–1585. doi: 10.1126/science.7041255. [DOI] [PubMed] [Google Scholar]
- Jacobsen H., Yasargil K., Winslow D. L., Craig J. C., Kröhn A., Duncan I. B., Mous J. Characterization of human immunodeficiency virus type 1 mutants with decreased sensitivity to proteinase inhibitor Ro 31-8959. Virology. 1995 Jan 10;206(1):527–534. doi: 10.1016/s0042-6822(95)80069-7. [DOI] [PubMed] [Google Scholar]
- Kozal M. J., Shah N., Shen N., Yang R., Fucini R., Merigan T. C., Richman D. D., Morris D., Hubbell E., Chee M. Extensive polymorphisms observed in HIV-1 clade B protease gene using high-density oligonucleotide arrays. Nat Med. 1996 Jul;2(7):753–759. doi: 10.1038/nm0796-753. [DOI] [PubMed] [Google Scholar]
- Louis J. M., Smith C. A., Wondrak E. M., Mora P. T., Oroszlan S. Substitution mutations of the highly conserved arginine 87 of HIV-1 protease result in loss of proteolytic activity. Biochem Biophys Res Commun. 1989 Oct 16;164(1):30–38. doi: 10.1016/0006-291x(89)91678-1. [DOI] [PubMed] [Google Scholar]
- Markowitz M., Mo H., Kempf D. J., Norbeck D. W., Bhat T. N., Erickson J. W., Ho D. D. Selection and analysis of human immunodeficiency virus type 1 variants with increased resistance to ABT-538, a novel protease inhibitor. J Virol. 1995 Feb;69(2):701–706. doi: 10.1128/jvi.69.2.701-706.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tisdale M., Myers R. E., Maschera B., Parry N. R., Oliver N. M., Blair E. D. Cross-resistance analysis of human immunodeficiency virus type 1 variants individually selected for resistance to five different protease inhibitors. Antimicrob Agents Chemother. 1995 Aug;39(8):1704–1710. doi: 10.1128/aac.39.8.1704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber I. T. Structural alignment of retroviral protease sequences. Gene. 1989 Dec 28;85(2):565–566. doi: 10.1016/0378-1119(89)90453-8. [DOI] [PubMed] [Google Scholar]
- Wondrak E. M., Louis J. M., Mora P. T., Oroszlan S. Purification of HIV-1 wild-type protease and characterization of proteolytically inactive HIV-1 protease mutants by pepstatin A affinity chromatography. FEBS Lett. 1991 Mar 25;280(2):347–350. doi: 10.1016/0014-5793(91)80328-z. [DOI] [PubMed] [Google Scholar]
