Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Mar;41(3):523–529. doi: 10.1128/aac.41.3.523

Characterization of the potent in vitro and in vivo antimalarial activities of ionophore compounds.

C Gumila 1, M L Ancelin 1, A M Delort 1, G Jeminet 1, H J Vial 1
PMCID: PMC163744  PMID: 9055986

Abstract

Large-scale in vitro screening of different types of ionophores previously pinpointed nine compounds that were very active and selective in vitro against Plasmodium falciparum; their in vitro and in vivo antimalarial effects were further studied. Addition of the ionophores to synchronized P. falciparum suspensions revealed that all P. falciparum stages were sensitive to the drugs. However, the schizont stages were three- to ninefold more sensitive, and 12 h was required for complete parasite clearance. Pretreatment of healthy erythrocytes with toxic doses of ionophores for 24 to 48 h showed that the activity was not due to an irreversible effect on the host erythrocyte. No preferential ionophore adsorption in infected or uninfected erythrocytes occurred. On the other hand, ionophore molecules strongly bound to serum proteins since increasing the serum concentration from 2 to 50% led to almost a 25-fold parallel increase in the ionophore 50% inhibitory concentration. Mice infected with the malaria parasites Plasmodium vinckei petteri or Plasmodium chabaudi were successfully treated with eight ionophores in a 4-day suppressive test. The 50% effective dose after intraperitoneal administration ranged from 0.4 to 4.1 mg/kg of body weight, and the therapeutic indices were about 5 for all ionophores except monensin A methyl ether, 5-bromo lasalocid A, and gramicidin D, whose therapeutic indices were 12, 18, and 344, respectively. These three compounds were found to be curative, with no recrudescence. Gramicidin D, which presented impressive antimalarial activity, requires parenteral administration, while 5-bromo lasalocid A has the major advantage of being active after oral administration. Overall, the acceptable levels of toxicity and the good in vivo therapeutic indices in the rodent model highlight the interesting potential of these ionophores for the treatment of malaria in higher animals.

Full Text

The Full Text of this article is available as a PDF (121.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adovelande J., Bastide B., Délèze J., Schrével J. Cytosolic free calcium in Plasmodium falciparum-infected erythrocytes and the effect of verapamil: a cytofluorimetric study. Exp Parasitol. 1993 May;76(3):247–258. doi: 10.1006/expr.1993.1030. [DOI] [PubMed] [Google Scholar]
  2. Beauté-Lafitte A., Altemayer-Caillard V., Gonnet-Gonzalez F., Ramiaramanana L., Chabaud A. G., Landau I. The chemosensitivity of the rodent malarias--relationships with the biology of merozoites. Int J Parasitol. 1994 Nov;24(7):981–986. doi: 10.1016/0020-7519(94)90163-5. [DOI] [PubMed] [Google Scholar]
  3. Cabantchik Z. I. Properties of permeation pathways induced in the human red cell membrane by malaria parasites. Blood Cells. 1990;16(2-3):421–432. [PubMed] [Google Scholar]
  4. Carter R., Walliker D. New observations on the malaria parasites of rodents of the Central African Republic - Plasmodium vinckei petteri subsp. nov. and Plasmodium chabaudi Landau, 1965. Ann Trop Med Parasitol. 1975 Jun;69(2):187–196. doi: 10.1080/00034983.1975.11687000. [DOI] [PubMed] [Google Scholar]
  5. Desjardins R. E., Canfield C. J., Haynes J. D., Chulay J. D. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979 Dec;16(6):710–718. doi: 10.1128/aac.16.6.710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Geary T. G., Divo A. A., Jensen J. B. Stage specific actions of antimalarial drugs on Plasmodium falciparum in culture. Am J Trop Med Hyg. 1989 Mar;40(3):240–244. doi: 10.4269/ajtmh.1989.40.240. [DOI] [PubMed] [Google Scholar]
  7. Ginsburg H., Handeli S., Friedman S., Gorodetsky R., Krugliak M. Effects of red blood cell potassium and hypertonicity on the growth of Plasmodium falciparum in culture. Z Parasitenkd. 1986;72(2):185–199. doi: 10.1007/BF00931146. [DOI] [PubMed] [Google Scholar]
  8. Ginsburg H. Transport pathways in the malaria-infected erythrocyte. Their characterization and their use as potential targets for chemotherapy. Biochem Pharmacol. 1994 Nov 16;48(10):1847–1856. doi: 10.1016/0006-2952(94)90582-7. [DOI] [PubMed] [Google Scholar]
  9. Goodrich R. D., Garrett J. E., Gast D. R., Kirick M. A., Larson D. A., Meiske J. C. Influence of monensin on the performance of cattle. J Anim Sci. 1984 Jun;58(6):1484–1498. doi: 10.2527/jas1984.5861484x. [DOI] [PubMed] [Google Scholar]
  10. Gumila C., Ancelin M. L., Jeminet G., Delort A. M., Miquel G., Vial H. J. Differential in vitro activities of ionophore compounds against Plasmodium falciparum and mammalian cells. Antimicrob Agents Chemother. 1996 Mar;40(3):602–608. doi: 10.1128/aac.40.3.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Herrell W. E., Heilman D. EXPERIMENTAL AND CLINICAL STUDIES ON GRAMICIDIN. J Clin Invest. 1941 Sep;20(5):583–591. doi: 10.1172/JCI101251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jensen J. B., Trager W. Plasmodium falciparum in culture: use of outdated erthrocytes and description of the candle jar method. J Parasitol. 1977 Oct;63(5):883–886. [PubMed] [Google Scholar]
  13. Kramer R., Ginsburg H. Calcium transport and compartment analysis of free and exchangeable calcium in Plasmodium falciparum-infected red blood cells. J Protozool. 1991 Nov-Dec;38(6):594–601. [PubMed] [Google Scholar]
  14. Lambros C., Vanderberg J. P. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979 Jun;65(3):418–420. [PubMed] [Google Scholar]
  15. Lee P., Ye Z., Van Dyke K., Kirk R. G. X-ray microanalysis of Plasmodium falciparum and infected red blood cells: effects of qinghaosu and chloroquine on potassium, sodium, and phosphorus composition. Am J Trop Med Hyg. 1988 Aug;39(2):157–165. doi: 10.4269/ajtmh.1988.39.157. [DOI] [PubMed] [Google Scholar]
  16. Li G. Q., Arnold K., Guo X. B., Jian H. X., Fu L. C. Randomised comparative study of mefloquine, qinghaosu, and pyrimethamine-sulfadoxine in patients with falciparum malaria. Lancet. 1984 Dec 15;2(8416):1360–1361. doi: 10.1016/s0140-6736(84)92057-9. [DOI] [PubMed] [Google Scholar]
  17. McColm A. A., McHardy N. Evaluation of a range of antimicrobial agents against the parasitic protozoa, Plasmodium falciparum, Babesia rodhaini and Theileria parva in vitro. Ann Trop Med Parasitol. 1984 Aug;78(4):345–354. doi: 10.1080/00034983.1984.11811831. [DOI] [PubMed] [Google Scholar]
  18. Moll G. N., Vial H. J., van der Wiele F. C., Ancelin M. L., Roelofsen B., Slotboom A. J., de Haas G. H., van Deenen L. L., Op den Kamp J. A. Selective elimination of malaria infected erythrocytes by a modified phospholipase A2 in vitro. Biochim Biophys Acta. 1990 May 9;1024(1):189–192. doi: 10.1016/0005-2736(90)90224-c. [DOI] [PubMed] [Google Scholar]
  19. Peters W. The chemotherapy of rodent malaria, XXII. The value of drug-resistant strains of P. berghei in screening for blood schizontocidal activity. Ann Trop Med Parasitol. 1975 Jun;69(2):155–171. [PubMed] [Google Scholar]
  20. Pressman B. C. Biological applications of ionophores. Annu Rev Biochem. 1976;45:501–530. doi: 10.1146/annurev.bi.45.070176.002441. [DOI] [PubMed] [Google Scholar]
  21. Raether W., Seidenath H., Mehlhorn H., Ganster H. J. The action of salinomycin-Na and lasalocid-Na on chloroquine- and mepacrine-resistant line of Plasmodium berghei K 173-strain in Wistar rats. Z Parasitenkd. 1985;71(5):567–574. doi: 10.1007/BF00925589. [DOI] [PubMed] [Google Scholar]
  22. Richards W. H., Maples B. K. Studies on Plasmodium falciparum in continuous cultivation. I. The effect of chloroquine and pyrimethamine on parasite growth and viability. Ann Trop Med Parasitol. 1979 Apr;73(2):99–108. [PubMed] [Google Scholar]
  23. Schapira A., Beales P. F., Halloran M. E. Malaria: living with drug resistance. Parasitol Today. 1993 May;9(5):168–174. doi: 10.1016/0169-4758(93)90140-b. [DOI] [PubMed] [Google Scholar]
  24. Schildknecht E. G., Siegel D., Richle R. W. Antiparasitic activity of natural and semisynthetic monensin urethanes. Chemotherapy. 1983;29(2):145–152. doi: 10.1159/000238188. [DOI] [PubMed] [Google Scholar]
  25. Shumard R. F., Callender M. E. Monensin, a new biologically active compound. VI. Anticoccidial activity. Antimicrob Agents Chemother (Bethesda) 1967;7:369–377. [PubMed] [Google Scholar]
  26. Tanabe K. Ion metabolism in malaria-infected erythrocytes. Blood Cells. 1990;16(2-3):437–449. [PubMed] [Google Scholar]
  27. Wasserman M., Alarcón C., Mendoza P. M. Effects of Ca++ depletion on the asexual cell cycle of Plasmodium falciparum. Am J Trop Med Hyg. 1982 Jul;31(4):711–717. doi: 10.4269/ajtmh.1982.31.711. [DOI] [PubMed] [Google Scholar]
  28. Westley J. W., Oliveto E. P., Berger J., Evans R. H., Jr, Glass R., Stempel A., Toome V., Williams T. Chemical transformations of antibiotic X-537A and their effect on antibacterial activity. J Med Chem. 1973 Apr;16(4):397–403. doi: 10.1021/jm00262a020. [DOI] [PubMed] [Google Scholar]
  29. White N. J., Krishna S. Treatment of malaria: some considerations and limitations of the current methods of assessment. Trans R Soc Trop Med Hyg. 1989 Nov-Dec;83(6):767–777. doi: 10.1016/0035-9203(89)90322-2. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES