Abstract
The erm family of 23S rRNA adenine-N6-methyltransferases confers resistance to all macrolide-lincosamide-streptograminB (MLS) antibiotics, but not all MLS antibiotics induce synthesis of Erm methyltransferase with equal efficiency in a given organism. The induction efficiency of a test panel of MLS antibiotics was studied by using two translational attenuator-lac reporter gene fusion constructs, one based on ermSV from Streptomyces viridochromogenes NRRL 2860 and the other based on ermC from Staphylococcus aureus RN2442. Four types of responses which were correlated with the macrolide ring size were seen, as follows: group 1, both ermSV and ermC were induced by the 14-membered-ring macrolides erythromycin, lankamycin, and matromycin, as well as by the lincosamide celesticetin; group 2, neither ermSV nor ermC was induced by the 12-membered-ring macrolide methymycin or by the lincosamide lincomycin or the streptogramin type B antibiotic ostreogrycin B; group 3, ermSV was selectively induced over ermC by the 16-membered-ring macrolides carbomycin, chalcomycin, cirramycin, kitasamycin, maridomycin, and tylosin; and group 4, ermC was selectively induced over ermSV by the 14-membered-ring macrolide megalomicin. These data suggest that the leader peptide determines the specificity of induction by different classes of MLS antibiotics and that for a given attenuator, a major factor which determines whether a given macrolide induces resistance is its size.
Full Text
The Full Text of this article is available as a PDF (231.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen N. E. Macrolide resistance in Staphylococcus aureus: inducers of macrolide resistance. Antimicrob Agents Chemother. 1977 Apr;11(4):669–674. doi: 10.1128/aac.11.4.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andremont A., Gerbaud G., Courvalin P. Plasmid-mediated high-level resistance to erythromycin in Escherichia coli. Antimicrob Agents Chemother. 1986 Mar;29(3):515–518. doi: 10.1128/aac.29.3.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birmingham V. A., Cox K. L., Larson J. L., Fishman S. E., Hershberger C. L., Seno E. T. Cloning and expression of a tylosin resistance gene from a tylosin-producing strain of Streptomyces fradiae. Mol Gen Genet. 1986 Sep;204(3):532–539. doi: 10.1007/BF00331036. [DOI] [PubMed] [Google Scholar]
- Cundliffe E. Glycosylation of macrolide antibiotics in extracts of Streptomyces lividans. Antimicrob Agents Chemother. 1992 Feb;36(2):348–352. doi: 10.1128/aac.36.2.348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cundliffe E. How antibiotic-producing organisms avoid suicide. Annu Rev Microbiol. 1989;43:207–233. doi: 10.1146/annurev.mi.43.100189.001231. [DOI] [PubMed] [Google Scholar]
- Dubnau D. Translational attenuation: the regulation of bacterial resistance to the macrolide-lincosamide-streptogramin B antibiotics. CRC Crit Rev Biochem. 1984;16(2):103–132. doi: 10.3109/10409238409102300. [DOI] [PubMed] [Google Scholar]
- Eckhardt T., Strickler J., Gorniak L., Burnett W. V., Fare L. R. Characterization of the promoter, signal sequence, and amino terminus of a secreted beta-galactosidase from "Streptomyces lividans". J Bacteriol. 1987 Sep;169(9):4249–4256. doi: 10.1128/jb.169.9.4249-4256.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujisawa Y., Weisblum B. A family of r-determinants in Streptomyces spp. that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibiotics. J Bacteriol. 1981 May;146(2):621–631. doi: 10.1128/jb.146.2.621-631.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gough J. A., Murray N. E. Sequence diversity among related genes for recognition of specific targets in DNA molecules. J Mol Biol. 1983 May 5;166(1):1–19. doi: 10.1016/s0022-2836(83)80047-3. [DOI] [PubMed] [Google Scholar]
- Hirsch C. F., Ensign J. C. Some properties of Streptomyces viridochromogenes spores. J Bacteriol. 1978 Jun;134(3):1056–1063. doi: 10.1128/jb.134.3.1056-1063.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jenkins G., Cundliffe E. Cloning and characterization of two genes from Streptomyces lividans that confer inducible resistance to lincomycin and macrolide antibiotics. Gene. 1991 Dec 1;108(1):55–62. doi: 10.1016/0378-1119(91)90487-v. [DOI] [PubMed] [Google Scholar]
- Kamimiya S., Weisblum B. Translational attenuation control of ermSF, an inducible resistance determinant encoding rRNA N-methyltransferase from Streptomyces fradiae. J Bacteriol. 1988 Apr;170(4):1800–1811. doi: 10.1128/jb.170.4.1800-1811.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelemen G. H., Zalacain M., Culebras E., Seno E. T., Cundliffe E. Transcriptional attenuation control of the tylosin-resistance gene tlrA in Streptomyces fradiae. Mol Microbiol. 1994 Nov;14(4):833–842. doi: 10.1111/j.1365-2958.1994.tb01319.x. [DOI] [PubMed] [Google Scholar]
- Larson J. L., Hershberger C. L. The minimal replicon of a streptomycete plasmid produces an ultrahigh level of plasmid DNA. Plasmid. 1986 May;15(3):199–209. doi: 10.1016/0147-619x(86)90038-7. [DOI] [PubMed] [Google Scholar]
- Leclercq R., Courvalin P. Intrinsic and unusual resistance to macrolide, lincosamide, and streptogramin antibiotics in bacteria. Antimicrob Agents Chemother. 1991 Jul;35(7):1273–1276. doi: 10.1128/aac.35.7.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayford M., Weisblum B. The ermC leader peptide: amino acid alterations leading to differential efficiency of induction by macrolide-lincosamide-streptogramin B antibiotics. J Bacteriol. 1990 Jul;172(7):3772–3779. doi: 10.1128/jb.172.7.3772-3779.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayford M., Weisblum B. ermC leader peptide. Amino acid sequence critical for induction by translational attenuation. J Mol Biol. 1989 Mar 5;206(1):69–79. doi: 10.1016/0022-2836(89)90524-x. [DOI] [PubMed] [Google Scholar]
- Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
- O'Hara K., Kanda T., Ohmiya K., Ebisu T., Kono M. Purification and characterization of macrolide 2'-phosphotransferase from a strain of Escherichia coli that is highly resistant to erythromycin. Antimicrob Agents Chemother. 1989 Aug;33(8):1354–1357. doi: 10.1128/aac.33.8.1354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ono H., Inoue M., Mao J. C., Mitsuhashi S. Drug resistance in Staphylococcus aureus. Induction of macrolide resistance by erythromycin, oleandomycin and their derivatives. Jpn J Microbiol. 1975 Oct;19(5):343–347. [PubMed] [Google Scholar]
- Pestka S., Vince R., LeMahieu R., Weiss F., Fern L., Unowsky J. Induction of erythromycin resistance in Staphyloccus aureus by erythromycin derivatives. Antimicrob Agents Chemother. 1976 Jan;9(1):128–130. doi: 10.1128/aac.9.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richardson M. A., Kuhstoss S., Solenberg P., Schaus N. A., Rao R. N. A new shuttle cosmid vector, pKC505, for streptomycetes: its use in the cloning of three different spiramycin-resistance genes from a Streptomyces ambofaciens library. Gene. 1987;61(3):231–241. doi: 10.1016/0378-1119(87)90187-9. [DOI] [PubMed] [Google Scholar]
- Schoner B., Geistlich M., Rosteck P., Jr, Rao R. N., Seno E., Reynolds P., Cox K., Burgett S., Hershberger C. Sequence similarity between macrolide-resistance determinants and ATP-binding transport proteins. Gene. 1992 Jun 15;115(1-2):93–96. doi: 10.1016/0378-1119(92)90545-z. [DOI] [PubMed] [Google Scholar]
- Thompson C. J., Skinner R. H., Thompson J., Ward J. M., Hopwood D. A., Cundliffe E. Biochemical characterization of resistance determinants cloned from antibiotic-producing streptomycetes. J Bacteriol. 1982 Aug;151(2):678–685. doi: 10.1128/jb.151.2.678-685.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uchiyama H., Weisblum B. N-Methyl transferase of Streptomyces erythraeus that confers resistance to the macrolide-lincosamide-streptogramin B antibiotics: amino acid sequence and its homology to cognate R-factor enzymes from pathogenic bacilli and cocci. Gene. 1985;38(1-3):103–110. doi: 10.1016/0378-1119(85)90208-2. [DOI] [PubMed] [Google Scholar]
- Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother. 1995 Mar;39(3):577–585. doi: 10.1128/AAC.39.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weisblum B. Insights into erythromycin action from studies of its activity as inducer of resistance. Antimicrob Agents Chemother. 1995 Apr;39(4):797–805. doi: 10.1128/aac.39.4.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zalacain M., Cundliffe E. Cloning of tlrD, a fourth resistance gene, from the tylosin producer, Streptomyces fradiae. Gene. 1991 Jan 2;97(1):137–142. doi: 10.1016/0378-1119(91)90021-3. [DOI] [PubMed] [Google Scholar]
- Zalacain M., Cundliffe E. Methylation of 23S ribosomal RNA due to carB, an antibiotic-resistance determinant from the carbomycin producer, Streptomyces thermotolerans. Eur J Biochem. 1990 Apr 20;189(1):67–72. doi: 10.1111/j.1432-1033.1990.tb15460.x. [DOI] [PubMed] [Google Scholar]