Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Mar;41(3):540–543. doi: 10.1128/aac.41.3.540

Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis.

A Scorpio 1, P Lindholm-Levy 1, L Heifets 1, R Gilman 1, S Siddiqi 1, M Cynamon 1, Y Zhang 1
PMCID: PMC163747  PMID: 9055989

Abstract

Pyrazinamide (PZA) is a first-line drug for short-course tuberculosis therapy. Resistance to PZA is usually accompanied by loss of pyrazinamidase (PZase) activity in Mycobacterium tuberculosis. PZase converts PZA to bactericidal pyrazinoic acid, and the loss of PZase activity is associated with PZA resistance. The gene (pncA) encoding the M. tuberculosis PZase has recently been sequenced, and mutations in pncA were previously found in a small number of PZA-resistant M. tuberculosis strains. To further understand the genetic basis of PZA resistance and determine the frequency of PZA-resistant strains having pncA mutations, we analyzed a panel of PZA-resistant clinical isolates and mutants made in vitro. Thirty-three of 38 PZA-resistant clinical isolates had pncA mutations. Among the five strains that did not contain pncA mutations, four were found to be falsely resistant and one was found to be borderline resistant to PZA. The 33 PZA-resistant clinical isolates and 8 mutants made in vitro contained various mutations, including nucleotide substitutions, insertions, or deletions in the pncA gene. The identified mutations were dispersed along the pncA gene, but some degree of clustering of mutations was found at the following regions: Gly132-Thr142, Pro69-Leu85, and Ile5-Asp12. PCR-single-strand conformation polymorphism (SSCP) analysis was shown to be useful for the rapid detection of pncA mutations in the PZA-resistant strains. We conclude that a mutation in the pncA gene is a major mechanism of PZA resistance and that direct sequencing by PCR or SSCP analysis should help to rapidly identify PZA-resistant M. tuberculosis strains.

Full Text

The Full Text of this article is available as a PDF (174.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloom B. R., Murray C. J. Tuberculosis: commentary on a reemergent killer. Science. 1992 Aug 21;257(5073):1055–1064. doi: 10.1126/science.257.5073.1055. [DOI] [PubMed] [Google Scholar]
  2. Butler W. R., Kilburn J. O. Susceptibility of Mycobacterium tuberculosis to pyrazinamide and its relationship to pyrazinamidase activity. Antimicrob Agents Chemother. 1983 Oct;24(4):600–601. doi: 10.1128/aac.24.4.600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Heifets L., Lindholm-Levy P. Pyrazinamide sterilizing activity in vitro against semidormant Mycobacterium tuberculosis bacterial populations. Am Rev Respir Dis. 1992 May;145(5):1223–1225. doi: 10.1164/ajrccm/145.5.1223. [DOI] [PubMed] [Google Scholar]
  4. Hewlett D., Jr, Horn D. L., Alfalla C. Drug-resistant tuberculosis: inconsistent results of pyrazinamide susceptibility testing. JAMA. 1995 Mar 22;273(12):916–917. [PubMed] [Google Scholar]
  5. Klemens S. P., Sharpe C. A., Cynamon M. H. Activity of pyrazinamide in a murine model against Mycobacterium tuberculosis isolates with various levels of in vitro susceptibility. Antimicrob Agents Chemother. 1996 Jan;40(1):14–16. doi: 10.1128/aac.40.1.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Konno K., Feldmann F. M., McDermott W. Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am Rev Respir Dis. 1967 Mar;95(3):461–469. doi: 10.1164/arrd.1967.95.3.461. [DOI] [PubMed] [Google Scholar]
  7. MACKANESS G. B. The intracellular activation of pyrazinamide and nicotinamide. Am Rev Tuberc. 1956 Nov;74(5):718–728. doi: 10.1164/artpd.1956.74.5.718. [DOI] [PubMed] [Google Scholar]
  8. MCCUNE R. M., Jr, MCDERMOTT W., TOMPSETT R. The fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. II. The conversion of tuberculous infection to the latent state by the administration of pyrazinamide and a companion drug. J Exp Med. 1956 Nov 1;104(5):763–802. doi: 10.1084/jem.104.5.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. McClatchy J. K., Tsang A. Y., Cernich M. S. Use of pyrazinamidase activity on Mycobacterium tuberculosis as a rapid method for determination of pyrazinamide susceptibility. Antimicrob Agents Chemother. 1981 Oct;20(4):556–557. doi: 10.1128/aac.20.4.556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McDERMOTT W., TOMPSETT R. Activation of pyrazinamide and nicotinamide in acidic environments in vitro. Am Rev Tuberc. 1954 Oct;70(4):748–754. doi: 10.1164/art.1954.70.4.748. [DOI] [PubMed] [Google Scholar]
  11. Miller M. A., Thibert L., Desjardins F., Siddiqi S. H., Dascal A. Testing of susceptibility of Mycobacterium tuberculosis to pyrazinamide: comparison of Bactec method with pyrazinamidase assay. J Clin Microbiol. 1995 Sep;33(9):2468–2470. doi: 10.1128/jcm.33.9.2468-2470.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mitchison D. A. The action of antituberculosis drugs in short-course chemotherapy. Tubercle. 1985 Sep;66(3):219–225. doi: 10.1016/0041-3879(85)90040-6. [DOI] [PubMed] [Google Scholar]
  13. Orita M., Suzuki Y., Sekiya T., Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics. 1989 Nov;5(4):874–879. doi: 10.1016/0888-7543(89)90129-8. [DOI] [PubMed] [Google Scholar]
  14. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  15. Scorpio A., Collins D., Whipple D., Cave D., Bates J., Zhang Y. Rapid differentiation of bovine and human tubercle bacilli based on a characteristic mutation in the bovine pyrazinamidase gene. J Clin Microbiol. 1997 Jan;35(1):106–110. doi: 10.1128/jcm.35.1.106-110.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Scorpio A., Zhang Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med. 1996 Jun;2(6):662–667. doi: 10.1038/nm0696-662. [DOI] [PubMed] [Google Scholar]
  17. Snider D. E., Jr, Rogowski J., Zierski M., Bek E., Long M. W. Successful intermittent treatment of smear-positive pulmonary tuberculosis in six months: a cooperative study in Poland. Am Rev Respir Dis. 1982 Feb;125(2):265–267. doi: 10.1164/arrd.1982.125.2.265. [DOI] [PubMed] [Google Scholar]
  18. TARSHIS M. S., WEED W. A., Jr Lack of significant in vitro sensitivity of Mycobacterium tuberculosis to pyrazinamide on three different solid media. Am Rev Tuberc. 1953 Mar;67(3):391–395. doi: 10.1164/art.1953.67.3.391. [DOI] [PubMed] [Google Scholar]
  19. Trivedi S. S., Desai S. G. Pyrazinamidase activity of Mycobacterium tuberculosis--a test of sensitivity to pyrazinamide. Tubercle. 1987 Sep;68(3):221–224. doi: 10.1016/0041-3879(87)90058-4. [DOI] [PubMed] [Google Scholar]
  20. Wayne L. G. Simple pyrazinamidase and urease tests for routine identification of mycobacteria. Am Rev Respir Dis. 1974 Jan;109(1):147–151. doi: 10.1164/arrd.1974.109.1.147. [DOI] [PubMed] [Google Scholar]
  21. YEAGER R. L., MUNROE W. G. C., DESSAU F. I. Pyrazinamide (aldinamide) in the treatment of pulmonary tuberculosis. Am Rev Tuberc. 1952 May;65(5):523–546. [PubMed] [Google Scholar]
  22. Zhang Y., Heym B., Allen B., Young D., Cole S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature. 1992 Aug 13;358(6387):591–593. doi: 10.1038/358591a0. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES