Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Mar;41(3):563–569. doi: 10.1128/aac.41.3.563

Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC beta-lactamase, and the foss of an outer membrane protein.

P A Bradford 1, C Urban 1, N Mariano 1, S J Projan 1, J J Rahal 1, K Bush 1
PMCID: PMC163751  PMID: 9055993

Abstract

Six Escherichia coli and 12 Klebsiella pneumoniae isolates from a single hospital expressed a common beta-lactamase with a pI of approximately 9.0 and were resistant to cefoxitin and cefotetan (MIC ranges, 64 to > 128 and 16 to > 128 micrograms/ml, respectively). Seventeen of the 18 strains produced multiple beta-lactamases. Most significantly, three K. pneumoniae strains were also resistant to imipenem (MICs, 8 to 32 micrograms/ml). Spectrophotometric beta-lactamase assays with purified enzyme indicated hydrolysis of cephamycins, in addition to cephaloridine and benzylpenicillin. The 4ene encoding the pI 9.0 beta-lactamase (designated ACT-1 for AmpC type) was cloned and sequenced, which revealed an ampC-type beta-lactamase gene that originated from Enterobacter cloacae and that had 86% sequence homology to the P99 beta-lactamase and 94% homology to the partial sequence of MIR-1. Southern blotting revealed that the gene encoding ACT-1 was on a large plasmid in some of the K. pneumoniae strains as well as on the chromosomes of all of the strains, suggesting that the gene is located on an easily mobilized element. Outer membrane protein profiles of the K. pneumoniae strains revealed that the three imipenem-resistant strains were lacking a major outer membrane protein of approximately 42 kDa which was present in the imipenem-susceptible strains. ACT-1 is the first plasmid-mediated AmpC-type beta-lactamase derived from Enterobacter which has been completely sequenced. This work demonstrates that in addition to resistance to cephamycins, imipenem resistance can occur in K. pneumoniae when a high level of the ACT-1 beta-lactamase is produced in combination with the loss of a major outer membrane protein.

Full Text

The Full Text of this article is available as a PDF (161.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames G. F. Resolution of bacterial proteins by polyacrylamide gel electrophoresis on slabs. Membrane, soluble, and periplasmic fractions. J Biol Chem. 1974 Jan 25;249(2):634–644. [PubMed] [Google Scholar]
  2. Bauernfeind A., Chong Y., Schweighart S. Extended broad spectrum beta-lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection. 1989 Sep-Oct;17(5):316–321. doi: 10.1007/BF01650718. [DOI] [PubMed] [Google Scholar]
  3. Bauernfeind A., Stemplinger I., Jungwirth R., Giamarellou H. Characterization of the plasmidic beta-lactamase CMY-2, which is responsible for cephamycin resistance. Antimicrob Agents Chemother. 1996 Jan;40(1):221–224. doi: 10.1128/aac.40.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bauernfeind A., Stemplinger I., Jungwirth R., Wilhelm R., Chong Y. Comparative characterization of the cephamycinase blaCMY-1 gene and its relationship with other beta-lactamase genes. Antimicrob Agents Chemother. 1996 Aug;40(8):1926–1930. doi: 10.1128/aac.40.8.1926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradford P. A., Urban C., Jaiswal A., Mariano N., Rasmussen B. A., Projan S. J., Rahal J. J., Bush K. SHV-7, a novel cefotaxime-hydrolyzing beta-lactamase, identified in Escherichia coli isolates from hospitalized nursing home patients. Antimicrob Agents Chemother. 1995 Apr;39(4):899–905. doi: 10.1128/aac.39.4.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bush K., Jacoby G. A., Medeiros A. A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995 Jun;39(6):1211–1233. doi: 10.1128/aac.39.6.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bush K., Singer S. B. Effective cooling allows sonication to be used for liberation of beta-lactamases from gram negative bacteria. J Antimicrob Chemother. 1989 Jul;24(1):82–84. doi: 10.1093/jac/24.1.82. [DOI] [PubMed] [Google Scholar]
  8. Chen H. Y., Livermore D. M. Activity of cefepime and other beta-lactam antibiotics against permeability mutants of Escherichia coli and Klebsiella pneumoniae. J Antimicrob Chemother. 1993 Nov;32 (Suppl B):63–74. doi: 10.1093/jac/32.suppl_b.63. [DOI] [PubMed] [Google Scholar]
  9. Chow J. W., Shlaes D. M. Imipenem resistance associated with the loss of a 40 kDa outer membrane protein in Enterobacter aerogenes. J Antimicrob Chemother. 1991 Oct;28(4):499–504. doi: 10.1093/jac/28.4.499. [DOI] [PubMed] [Google Scholar]
  10. Ehrhardt A. F., Sanders C. C., Thomson K. S., Watanakunakorn C., Trujillano-Martin I. Emergence of resistance to imipenem in Enterobacter isolates masquerading as Klebsiella pneumoniae during therapy with imipenem/cilastatin. Clin Infect Dis. 1993 Jul;17(1):120–122. doi: 10.1093/clinids/17.1.120. [DOI] [PubMed] [Google Scholar]
  11. Fosberry A. P., Payne D. J., Lawlor E. J., Hodgson J. E. Cloning and sequence analysis of blaBIL-1, a plasmid-mediated class C beta-lactamase gene in Escherichia coli BS. Antimicrob Agents Chemother. 1994 May;38(5):1182–1185. doi: 10.1128/aac.38.5.1182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Galleni M., Lindberg F., Normark S., Cole S., Honore N., Joris B., Frere J. M. Sequence and comparative analysis of three Enterobacter cloacae ampC beta-lactamase genes and their products. Biochem J. 1988 Mar 15;250(3):753–760. doi: 10.1042/bj2500753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gazouli M., Tzouvelekis L. S., Prinarakis E., Miriagou V., Tzelepi E. Transferable cefoxitin resistance in enterobacteria from Greek hospitals and characterization of a plasmid-mediated group 1 beta-lactamase (LAT-2). Antimicrob Agents Chemother. 1996 Jul;40(7):1736–1740. doi: 10.1128/aac.40.7.1736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gonzalez Leiza M., Perez-Diaz J. C., Ayala J., Casellas J. M., Martinez-Beltran J., Bush K., Baquero F. Gene sequence and biochemical characterization of FOX-1 from Klebsiella pneumoniae, a new AmpC-type plasmid-mediated beta-lactamase with two molecular variants. Antimicrob Agents Chemother. 1994 Sep;38(9):2150–2157. doi: 10.1128/aac.38.9.2150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  16. Horii T., Arakawa Y., Ohta M., Ichiyama S., Wacharotayankun R., Kato N. Plasmid-mediated AmpC-type beta-lactamase isolated from Klebsiella pneumoniae confers resistance to broad-spectrum beta-lactams, including moxalactam. Antimicrob Agents Chemother. 1993 May;37(5):984–990. doi: 10.1128/aac.37.5.984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Horii T., Arakawa Y., Ohta M., Sugiyama T., Wacharotayankun R., Ito H., Kato N. Characterization of a plasmid-borne and constitutively expressed blaMOX-1 gene encoding AmpC-type beta-lactamase. Gene. 1994 Feb 11;139(1):93–98. doi: 10.1016/0378-1119(94)90529-0. [DOI] [PubMed] [Google Scholar]
  18. Jaurin B., Grundström T. ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of beta-lactamases of the penicillinase type. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4897–4901. doi: 10.1073/pnas.78.8.4897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lee E. H., Nicolas M. H., Kitzis M. D., Pialoux G., Collatz E., Gutmann L. Association of two resistance mechanisms in a clinical isolate of Enterobacter cloacae with high-level resistance to imipenem. Antimicrob Agents Chemother. 1991 Jun;35(6):1093–1098. doi: 10.1128/aac.35.6.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lindberg F., Normark S. Sequence of the Citrobacter freundii OS60 chromosomal ampC beta-lactamase gene. Eur J Biochem. 1986 May 2;156(3):441–445. doi: 10.1111/j.1432-1033.1986.tb09601.x. [DOI] [PubMed] [Google Scholar]
  21. Lugtenberg B., Meijers J., Peters R., van der Hoek P., van Alphen L. Electrophoretic resolution of the "major outer membrane protein" of Escherichia coli K12 into four bands. FEBS Lett. 1975 Oct 15;58(1):254–258. doi: 10.1016/0014-5793(75)80272-9. [DOI] [PubMed] [Google Scholar]
  22. Martínez-Martínez L., Hernández-Allés S., Albertí S., Tomás J. M., Benedi V. J., Jacoby G. A. In vivo selection of porin-deficient mutants of Klebsiella pneumoniae with increased resistance to cefoxitin and expanded-spectrum-cephalosporins. Antimicrob Agents Chemother. 1996 Feb;40(2):342–348. doi: 10.1128/aac.40.2.342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mathew A., Harris A. M., Marshall M. J., Ross G. W. The use of analytical isoelectric focusing for detection and identification of beta-lactamases. J Gen Microbiol. 1975 May;88(1):169–178. doi: 10.1099/00221287-88-1-169. [DOI] [PubMed] [Google Scholar]
  24. Meyer K. S., Urban C., Eagan J. A., Berger B. J., Rahal J. J. Nosocomial outbreak of Klebsiella infection resistant to late-generation cephalosporins. Ann Intern Med. 1993 Sep 1;119(5):353–358. doi: 10.7326/0003-4819-119-5-199309010-00001. [DOI] [PubMed] [Google Scholar]
  25. Papanicolaou G. A., Medeiros A. A., Jacoby G. A. Novel plasmid-mediated beta-lactamase (MIR-1) conferring resistance to oxyimino- and alpha-methoxy beta-lactams in clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother. 1990 Nov;34(11):2200–2209. doi: 10.1128/aac.34.11.2200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Payne D. J., Woodford N., Amyes S. G. Characterization of the plasmid mediated beta-lactamase BIL-1. J Antimicrob Chemother. 1992 Aug;30(2):119–127. doi: 10.1093/jac/30.2.119. [DOI] [PubMed] [Google Scholar]
  27. Quinn J. P., Miyashiro D., Sahm D., Flamm R., Bush K. Novel plasmid-mediated beta-lactamase (TEM-10) conferring selective resistance to ceftazidime and aztreonam in clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother. 1989 Sep;33(9):1451–1456. doi: 10.1128/aac.33.9.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Raimondi A., Traverso A., Nikaido H. Imipenem- and meropenem-resistant mutants of Enterobacter cloacae and Proteus rettgeri lack porins. Antimicrob Agents Chemother. 1991 Jun;35(6):1174–1180. doi: 10.1128/aac.35.6.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rasmussen B. A., Bradford P. A., Quinn J. P., Wiener J., Weinstein R. A., Bush K. Genetically diverse ceftazidime-resistant isolates from a single center: biochemical and genetic characterization of TEM-10 beta-lactamases encoded by different nucleotide sequences. Antimicrob Agents Chemother. 1993 Sep;37(9):1989–1992. doi: 10.1128/aac.37.9.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rasmussen B. A., Gluzman Y., Tally F. P. Cloning and sequencing of the class B beta-lactamase gene (ccrA) from Bacteroides fragilis TAL3636. Antimicrob Agents Chemother. 1990 Aug;34(8):1590–1592. doi: 10.1128/aac.34.8.1590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rice L. B., Carias L. L., Etter L., Shlaes D. M. Resistance to cefoperazone-sulbactam in Klebsiella pneumoniae: evidence for enhanced resistance resulting from the coexistence of two different resistance mechanisms. Antimicrob Agents Chemother. 1993 May;37(5):1061–1064. doi: 10.1128/aac.37.5.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sanders W. E., Jr, Sanders C. C. Inducible beta-lactamases: clinical and epidemiologic implications for use of newer cephalosporins. Rev Infect Dis. 1988 Jul-Aug;10(4):830–838. doi: 10.1093/clinids/10.4.830. [DOI] [PubMed] [Google Scholar]
  33. Sykes R. B., Bonner D. P., Bush K., Georgopapadakou N. H. Azthreonam (SQ 26,776), a synthetic monobactam specifically active against aerobic gram-negative bacteria. Antimicrob Agents Chemother. 1982 Jan;21(1):85–92. doi: 10.1128/aac.21.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995 Sep;33(9):2233–2239. doi: 10.1128/jcm.33.9.2233-2239.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Thomson K. S., Sanders C. C., Chmel H. Imipenem resistance in Enterobacter. Eur J Clin Microbiol Infect Dis. 1993 Aug;12(8):610–613. doi: 10.1007/BF01973639. [DOI] [PubMed] [Google Scholar]
  36. Tzouvelekis L. S., Tzelepi E., Mentis A. F. Nucleotide sequence of a plasmid-mediated cephalosporinase gene (blaLAT-1) found in Klebsiella pneumoniae. Antimicrob Agents Chemother. 1994 Sep;38(9):2207–2209. doi: 10.1128/aac.38.9.2207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Urban C., Meyer K. S., Mariano N., Rahal J. J., Flamm R., Rasmussen B. A., Bush K. Identification of TEM-26 beta-lactamase responsible for a major outbreak of ceftazidime-resistant Klebsiella pneumoniae. Antimicrob Agents Chemother. 1994 Feb;38(2):392–395. doi: 10.1128/aac.38.2.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Vatopoulos A. C., Philippon A., Tzouvelekis L. S., Komninou Z., Legakis N. J. Prevalence of a transferable SHV-5 type beta-lactamase in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Greece. J Antimicrob Chemother. 1990 Nov;26(5):635–648. doi: 10.1093/jac/26.5.635. [DOI] [PubMed] [Google Scholar]
  39. van de Klundert J. A., van Gestel M. H., Meerdink G., de Marie S. Emergence of bacterial resistance to cefamandole in vivo due to outer membrane protein deficiency. Eur J Clin Microbiol Infect Dis. 1988 Dec;7(6):776–778. doi: 10.1007/BF01975046. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES