Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Mar;41(3):578–582. doi: 10.1128/aac.41.3.578

In vitro susceptibilities of Bartonella henselae, B. quintana, B. elizabethae, Rickettsia rickettsii, R. conorii, R. akari, and R. prowazekii to macrolide antibiotics as determined by immunofluorescent-antibody analysis of infected Vero cell monolayers.

T J Ives 1, P Manzewitsch 1, R L Regnery 1, J D Butts 1, M Kebede 1
PMCID: PMC163754  PMID: 9055996

Abstract

The in vitro susceptibilities of Bartonella (Rochalimaea) henselae, B. quintana, B. elizabethae, Rickettsia akari, R. conorii, R. prowazekii, and R. rickettsii to different concentrations of azithromycin, clarithromycin, dirithromycin, erythromycin, and roxithromycin in Vero cell cultures were evaluated. Bartonella and Rickettsia spp. were allowed to initiate infection of the antibiotic-free Vero cell monolayers, which were maintained in 16-chamber microscope slides in the absence of antibiotics at 32 degrees C in a CO2-enriched atmosphere. The monolayers were then incubated for 3 h to allow for initial host cell intracellular penetration by infecting species. After inoculation, inocula were replaced and tested with media containing 12 different concentrations of each antibiotic in replicate (10 wells of each antibiotic dilution) for each species, and the monolayers were reincubated. Tetracycline served as the control. Growth status of Bartonella spp. and Rickettsia spp. was determined by evaluation of immunofluorescent staining bacilli. Five days later, when antibiotic-free, control-infected cell monolayers demonstrated significant fluorescence, media were removed for all cell monolayers, the monolayers were fixed, and all specimens were stained with standard indirect immunofluorescent antibody reagents. Fluorescent foci were enumerated by counting such foci on random fields visualized with an epifluorescence microscope. The extent of antibiotic-induced focus inhibition was recorded for each dilution of antibiotic and compared with that of an antibiotic-negative control. Effective antibiotic dilution endpoints for inhibition of Bartonella and Rickettsia proliferation, as judged by absence of increase of significant fluorescence (as compared with no-growth controls), were enumerated by determining the number of cell culture chambers at various antibiotic dilutions that were negative or positive for significant Bartonella- or Rickettsia-specific fluorescence. All of the macrolide agents tested were readily active against all three Bartonella organisms, and azithromycin, clarithromycin, and roxithromycin may have potential in the treatment of Rickettsia infections. Animal model-based clinical trials are warranted to define the specific treatment role of the newer macrolide antibiotics.

Full Text

The Full Text of this article is available as a PDF (82.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adal K. A., Cockerell C. J., Petri W. A., Jr Cat scratch disease, bacillary angiomatosis, and other infections due to Rochalimaea. N Engl J Med. 1994 May 26;330(21):1509–1515. doi: 10.1056/NEJM199405263302108. [DOI] [PubMed] [Google Scholar]
  2. Anderson B., Sims K., Regnery R., Robinson L., Schmidt M. J., Goral S., Hager C., Edwards K. Detection of Rochalimaea henselae DNA in specimens from cat scratch disease patients by PCR. J Clin Microbiol. 1994 Apr;32(4):942–948. doi: 10.1128/jcm.32.4.942-948.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Batterman H. J., Peek J. A., Loutit J. S., Falkow S., Tompkins L. S. Bartonella henselae and Bartonella quintana adherence to and entry into cultured human epithelial cells. Infect Immun. 1995 Nov;63(11):4553–4556. doi: 10.1128/iai.63.11.4553-4556.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bergogne-Bérézin E. Tissue distribution of roxithromycin. J Antimicrob Chemother. 1987 Nov;20 (Suppl B):113–120. doi: 10.1093/jac/20.suppl_b.113. [DOI] [PubMed] [Google Scholar]
  5. Birkett D. J., Robson R. A., Grgurinovich N., Tonkin A. Single oral dose pharmacokinetics of erythromycin and roxithromycin and the effects of chronic dosing. Ther Drug Monit. 1990 Jan;12(1):65–71. doi: 10.1097/00007691-199001000-00012. [DOI] [PubMed] [Google Scholar]
  6. Chu S. Y., Wilson D. S., Guay D. R., Craft C. Clarithromycin pharmacokinetics in healthy young and elderly volunteers. J Clin Pharmacol. 1992 Nov;32(11):1045–1049. doi: 10.1002/j.1552-4604.1992.tb03809.x. [DOI] [PubMed] [Google Scholar]
  7. Daly J. S., Worthington M. G., Brenner D. J., Moss C. W., Hollis D. G., Weyant R. S., Steigerwalt A. G., Weaver R. E., Daneshvar M. I., O'Connor S. P. Rochalimaea elizabethae sp. nov. isolated from a patient with endocarditis. J Clin Microbiol. 1993 Apr;31(4):872–881. doi: 10.1128/jcm.31.4.872-881.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dolan M. J., Wong M. T., Regnery R. L., Jorgensen J. H., Garcia M., Peters J., Drehner D. Syndrome of Rochalimaea henselae adenitis suggesting cat scratch disease. Ann Intern Med. 1993 Mar 1;118(5):331–336. doi: 10.7326/0003-4819-118-5-199303010-00002. [DOI] [PubMed] [Google Scholar]
  9. Drancourt M., Raoult D. In vitro susceptibilities of Rickettsia rickettsii and Rickettsia conorii to roxithromycin and pristinamycin. Antimicrob Agents Chemother. 1989 Dec;33(12):2146–2148. doi: 10.1128/aac.33.12.2146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fishbein D. B., Frontini M. G., Giles R., Vernon L. L. Fatal cases of Rocky Mountain spotted fever in the United States, 1981-1988. Ann N Y Acad Sci. 1990;590:246–247. doi: 10.1111/j.1749-6632.1990.tb42227.x. [DOI] [PubMed] [Google Scholar]
  11. García I., Pascual A., Guzman M. C., Perea E. J. Uptake and intracellular activity of sparfloxacin in human polymorphonuclear leukocytes and tissue culture cells. Antimicrob Agents Chemother. 1992 May;36(5):1053–1056. doi: 10.1128/aac.36.5.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gladue R. P., Bright G. M., Isaacson R. E., Newborg M. F. In vitro and in vivo uptake of azithromycin (CP-62,993) by phagocytic cells: possible mechanism of delivery and release at sites of infection. Antimicrob Agents Chemother. 1989 Mar;33(3):277–282. doi: 10.1128/aac.33.3.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gladue R. P., Snider M. E. Intracellular accumulation of azithromycin by cultured human fibroblasts. Antimicrob Agents Chemother. 1990 Jun;34(6):1056–1060. doi: 10.1128/aac.34.6.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hand W. L., King-Thompson N. L., Johnson J. D. Influence of bacterial-antibiotic interactions on subsequent antimicrobial activity of alveolar macrophages. J Infect Dis. 1984 Feb;149(2):271–276. doi: 10.1093/infdis/149.2.271. [DOI] [PubMed] [Google Scholar]
  15. Heinzen R. A., Hayes S. F., Peacock M. G., Hackstadt T. Directional actin polymerization associated with spotted fever group Rickettsia infection of Vero cells. Infect Immun. 1993 May;61(5):1926–1935. doi: 10.1128/iai.61.5.1926-1935.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ishiguro M., Koga H., Kohno S., Hayashi T., Yamaguchi K., Hirota M. Penetration of macrolides into human polymorphonuclear leucocytes. J Antimicrob Chemother. 1989 Nov;24(5):719–729. doi: 10.1093/jac/24.5.719. [DOI] [PubMed] [Google Scholar]
  17. Koehler J. E., Quinn F. D., Berger T. G., LeBoit P. E., Tappero J. W. Isolation of Rochalimaea species from cutaneous and osseous lesions of bacillary angiomatosis. N Engl J Med. 1992 Dec 3;327(23):1625–1631. doi: 10.1056/NEJM199212033272303. [DOI] [PubMed] [Google Scholar]
  18. Koehler J. E., Tappero J. W. Bacillary angiomatosis and bacillary peliosis in patients infected with human immunodeficiency virus. Clin Infect Dis. 1993 Oct;17(4):612–624. doi: 10.1093/clinids/17.4.612. [DOI] [PubMed] [Google Scholar]
  19. Margileth A. M. Antibiotic therapy for cat-scratch disease: clinical study of therapeutic outcome in 268 patients and a review of the literature. Pediatr Infect Dis J. 1992 Jun;11(6):474–478. [PubMed] [Google Scholar]
  20. Martin J. R., Johnson P., Miller M. F. Uptake, accumulation, and egress of erythromycin by tissue culture cells of human origin. Antimicrob Agents Chemother. 1985 Mar;27(3):314–319. doi: 10.1128/aac.27.3.314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Maurin M., Gasquet S., Ducco C., Raoult D. MICs of 28 antibiotic compounds for 14 Bartonella (formerly Rochalimaea) isolates. Antimicrob Agents Chemother. 1995 Nov;39(11):2387–2391. doi: 10.1128/aac.39.11.2387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Maurin M., Raoult D. Antimicrobial susceptibility of Rochalimaea quintana, Rochalimaea vinsonii, and the newly recognized Rochalimaea henselae. J Antimicrob Chemother. 1993 Oct;32(4):587–594. doi: 10.1093/jac/32.4.587. [DOI] [PubMed] [Google Scholar]
  23. Maurin M., Raoult D. In vitro susceptibilities of spotted fever group rickettsiae and Coxiella burnetti to clarithromycin. Antimicrob Agents Chemother. 1993 Dec;37(12):2633–2637. doi: 10.1128/aac.37.12.2633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mor N., Heifets L. MICs and MBCs of clarithromycin against Mycobacterium avium within human macrophages. Antimicrob Agents Chemother. 1993 Jan;37(1):111–114. doi: 10.1128/aac.37.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mtairag E. M., Abdelghaffar H., Douhet C., Labro M. T. Role of extracellular calcium in in vitro uptake and intraphagocytic location of macrolides. Antimicrob Agents Chemother. 1995 Aug;39(8):1676–1682. doi: 10.1128/aac.39.8.1676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Musso D., Drancourt M., Raoult D. Lack of bactericidal effect of antibiotics except aminoglycosides on Bartonella (Rochalimaea) henselae. J Antimicrob Chemother. 1995 Jul;36(1):101–108. doi: 10.1093/jac/36.1.101. [DOI] [PubMed] [Google Scholar]
  27. Muñoz-Espin T., López-Parés P., Espejo-Arenas E., Font-Creus B., Martinez-Vila I., Travería-Casanova J., Segura-Porta F., Bella-Cueto F. Erythromycin versus tetracycline for treatment of Mediterranean spotted fever. Arch Dis Child. 1986 Oct;61(10):1027–1029. doi: 10.1136/adc.61.10.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Myers W. F., Grossman D. M., Wisseman C. L., Jr Antibiotic susceptibility patterns in Rochalimaea quintana, the agent of trench fever. Antimicrob Agents Chemother. 1984 Jun;25(6):690–693. doi: 10.1128/aac.25.6.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ormsbee R. A. Rickettsiae as organisms. Acta Virol. 1985 Sep;29(5):432–448. [PubMed] [Google Scholar]
  30. Ramsey P. G., Press O. W. Successful treatment of Rocky Mountain 'spotless' fever. West J Med. 1984 Jan;140(1):94–96. [PMC free article] [PubMed] [Google Scholar]
  31. Raoult D., Drancourt M. Antimicrobial therapy of rickettsial diseases. Antimicrob Agents Chemother. 1991 Dec;35(12):2457–2462. doi: 10.1128/aac.35.12.2457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Raoult D., Roussellier P., Tamalet J. In vitro evaluation of josamycin, spiramycin, and erythromycin against Rickettsia rickettsii and R. conorii. Antimicrob Agents Chemother. 1988 Feb;32(2):255–256. doi: 10.1128/aac.32.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Raoult D., Roussellier P., Vestris G., Tamalet J. In vitro antibiotic susceptibility of Rickettsia rickettsii and Rickettsia conorii: plaque assay and microplaque colorimetric assay. J Infect Dis. 1987 May;155(5):1059–1062. doi: 10.1093/infdis/155.5.1059. [DOI] [PubMed] [Google Scholar]
  34. Regnery R. L., Anderson B. E., Clarridge J. E., 3rd, Rodriguez-Barradas M. C., Jones D. C., Carr J. H. Characterization of a novel Rochalimaea species, R. henselae sp. nov., isolated from blood of a febrile, human immunodeficiency virus-positive patient. J Clin Microbiol. 1992 Feb;30(2):265–274. doi: 10.1128/jcm.30.2.265-274.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Scaglione F., Demartini G., Dugnani S., Fraschini F. A new model examining intracellular and extracellular activity of amoxicillin, azithromycin, and clarithromycin in infected cells. Chemotherapy. 1993 Nov-Dec;39(6):416–423. doi: 10.1159/000238987. [DOI] [PubMed] [Google Scholar]
  36. Shaked Y., Samra Y., Maeir M. K., Rubinstein E. Murine typhus and spotted fever in Israel in the eighties: retrospective analysis. Infection. 1988 Sep-Oct;16(5):283–287. doi: 10.1007/BF01645073. [DOI] [PubMed] [Google Scholar]
  37. Welch D. F., Pickett D. A., Slater L. N., Steigerwalt A. G., Brenner D. J. Rochalimaea henselae sp. nov., a cause of septicemia, bacillary angiomatosis, and parenchymal bacillary peliosis. J Clin Microbiol. 1992 Feb;30(2):275–280. doi: 10.1128/jcm.30.2.275-280.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wisseman C. L., Jr, Edlinger E. A., Waddell A. D., Jones M. R. Infection cycle of Rickettsia rickettsii in chicken embryo and L-929 cells in culture. Infect Immun. 1976 Oct;14(4):1052–1064. doi: 10.1128/iai.14.4.1052-1064.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wisseman C. L., Jr, Ordonez S. V. Actions of antibiotics on Rickettsia rickettsii. J Infect Dis. 1986 Mar;153(3):626–628. doi: 10.1093/infdis/153.3.626. [DOI] [PubMed] [Google Scholar]
  40. Wisseman C. L., Jr, Waddell A. D., Walsh W. T. In vitro studies of the action of antibiotics on Rickettsia prowazeki by two basic methods of cell culture. J Infect Dis. 1974 Dec;130(6):564–574. doi: 10.1093/infdis/130.6.564. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES