Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Mar;41(3):600–606. doi: 10.1128/aac.41.3.600

Analysis of the oxyR-ahpC region in isoniazid-resistant and -susceptible Mycobacterium tuberculosis complex organisms recovered from diseased humans and animals in diverse localities.

S Sreevatsan 1, X Pan 1, Y Zhang 1, V Deretic 1, J M Musser 1
PMCID: PMC163758  PMID: 9056000

Abstract

Automated DNA sequencing was used to analyze the oxyR-ahpC region in 229 Mycobacterium tuberculosis complex isolates recently recovered from diseased humans and animals. The entire 1,221-bp region was studied in 118 isolates, and 111 other isolates were sequenced for oxyR, ahpC, or the 105-bp oxyR-ahpC intergenic region. The sample included isoniazid (INH)-susceptible and -resistant organisms in which the katG gene and inhA locus had previously been sequenced in their entirety to identify polymorphisms. A total of 16 polymorphic sites was identified, including 5 located in oxyR, 2 in ahpC, and 9 in the 105-bp intergenic region. All polymorphic sites located in the intergenic region, and the two missense substitutions identified in ahpC, occurred in INH-resistant organisms. In contrast, there was no preferential association of polymorphisms in oxyR, a pseudogene, with INH-resistant organisms. Surprisingly, most INH-resistant strains with KatG codon 315 substitutions that substantially reduce catalase-peroxidase activity and confer high MICs of INH lacked alterations in the ahpC gene or oxyR-ahpC intervening region. Taken together, the data are consistent with the hypothesis that some polymorphisms located in the ahpC-oxyR intergenic region are selected for after reduction in catalase or peroxidase activity attributable to katG alterations arising with INH therapy. These mutations are uncommon in recently recovered clinically significant organisms, and hence, there is no strict association with INH-resistant patient isolates. The ahpC compensatory mutations are apparently uncommon because strains with a KatG null phenotype are relatively rare among epidemiologically independent INH-resistant organisms.

Full Text

The Full Text of this article is available as a PDF (183.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banerjee A., Dubnau E., Quemard A., Balasubramanian V., Um K. S., Wilson T., Collins D., de Lisle G., Jacobs W. R., Jr inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science. 1994 Jan 14;263(5144):227–230. doi: 10.1126/science.8284673. [DOI] [PubMed] [Google Scholar]
  2. Bifani P. J., Plikaytis B. B., Kapur V., Stockbauer K., Pan X., Lutfey M. L., Moghazeh S. L., Eisner W., Daniel T. M., Kaplan M. H. Origin and interstate spread of a New York City multidrug-resistant Mycobacterium tuberculosis clone family. JAMA. 1996 Feb 14;275(6):452–457. [PubMed] [Google Scholar]
  3. Christman M. F., Morgan R. W., Jacobson F. S., Ames B. N. Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell. 1985 Jul;41(3):753–762. doi: 10.1016/s0092-8674(85)80056-8. [DOI] [PubMed] [Google Scholar]
  4. Christman M. F., Storz G., Ames B. N. OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium, is homologous to a family of bacterial regulatory proteins. Proc Natl Acad Sci U S A. 1989 May;86(10):3484–3488. doi: 10.1073/pnas.86.10.3484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deretic V., Philipp W., Dhandayuthapani S., Mudd M. H., Curcic R., Garbe T., Heym B., Via L. E., Cole S. T. Mycobacterium tuberculosis is a natural mutant with an inactivated oxidative-stress regulatory gene: implications for sensitivity to isoniazid. Mol Microbiol. 1995 Sep;17(5):889–900. doi: 10.1111/j.1365-2958.1995.mmi_17050889.x. [DOI] [PubMed] [Google Scholar]
  6. Dhandayuthapani S., Zhang Y., Mudd M. H., Deretic V. Oxidative stress response and its role in sensitivity to isoniazid in mycobacteria: characterization and inducibility of ahpC by peroxides in Mycobacterium smegmatis and lack of expression in M. aurum and M. tuberculosis. J Bacteriol. 1996 Jun;178(12):3641–3649. doi: 10.1128/jb.178.12.3641-3649.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Farr S. B., Kogoma T. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev. 1991 Dec;55(4):561–585. doi: 10.1128/mr.55.4.561-585.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Heym B., Alzari P. M., Honoré N., Cole S. T. Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis. Mol Microbiol. 1995 Jan;15(2):235–245. doi: 10.1111/j.1365-2958.1995.tb02238.x. [DOI] [PubMed] [Google Scholar]
  9. Heym B., Zhang Y., Poulet S., Young D., Cole S. T. Characterization of the katG gene encoding a catalase-peroxidase required for the isoniazid susceptibility of Mycobacterium tuberculosis. J Bacteriol. 1993 Jul;175(13):4255–4259. doi: 10.1128/jb.175.13.4255-4259.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kapur V., Li L. L., Hamrick M. R., Plikaytis B. B., Shinnick T. M., Telenti A., Jacobs W. R., Jr, Banerjee A., Cole S., Yuen K. Y. Rapid Mycobacterium species assignment and unambiguous identification of mutations associated with antimicrobial resistance in Mycobacterium tuberculosis by automated DNA sequencing. Arch Pathol Lab Med. 1995 Feb;119(2):131–138. [PubMed] [Google Scholar]
  11. Kapur V., Whittam T. S., Musser J. M. Is Mycobacterium tuberculosis 15,000 years old? J Infect Dis. 1994 Nov;170(5):1348–1349. doi: 10.1093/infdis/170.5.1348. [DOI] [PubMed] [Google Scholar]
  12. Kochi A. The global tuberculosis situation and the new control strategy of the World Health Organization. Tubercle. 1991 Mar;72(1):1–6. doi: 10.1016/0041-3879(91)90017-m. [DOI] [PubMed] [Google Scholar]
  13. MIDDLEBROOK G. Isoniazid-resistance and catalase activity of tubercle bacilli; a preliminary report. Am Rev Tuberc. 1954 Mar;69(3):471–472. doi: 10.1164/art.1954.69.3.471. [DOI] [PubMed] [Google Scholar]
  14. Morris S., Bai G. H., Suffys P., Portillo-Gomez L., Fairchok M., Rouse D. Molecular mechanisms of multiple drug resistance in clinical isolates of Mycobacterium tuberculosis. J Infect Dis. 1995 Apr;171(4):954–960. doi: 10.1093/infdis/171.4.954. [DOI] [PubMed] [Google Scholar]
  15. Musser J. M. Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin Microbiol Rev. 1995 Oct;8(4):496–514. doi: 10.1128/cmr.8.4.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Musser J. M., Kapur V., Williams D. L., Kreiswirth B. N., van Soolingen D., van Embden J. D. Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing: restricted array of mutations associated with drug resistance. J Infect Dis. 1996 Jan;173(1):196–202. doi: 10.1093/infdis/173.1.196. [DOI] [PubMed] [Google Scholar]
  17. Raviglione M. C., Snider D. E., Jr, Kochi A. Global epidemiology of tuberculosis. Morbidity and mortality of a worldwide epidemic. JAMA. 1995 Jan 18;273(3):220–226. [PubMed] [Google Scholar]
  18. Rosner J. L., Storz G. Effects of peroxides on susceptibilities of Escherichia coli and Mycobacterium smegmatis to isoniazid. Antimicrob Agents Chemother. 1994 Aug;38(8):1829–1833. doi: 10.1128/aac.38.8.1829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rosner J. L. Susceptibilities of oxyR regulon mutants of Escherichia coli and Salmonella typhimurium to isoniazid. Antimicrob Agents Chemother. 1993 Oct;37(10):2251–2253. doi: 10.1128/aac.37.10.2251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rouse D. A., DeVito J. A., Li Z., Byer H., Morris S. L. Site-directed mutagenesis of the katG gene of Mycobacterium tuberculosis: effects on catalase-peroxidase activities and isoniazid resistance. Mol Microbiol. 1996 Nov;22(3):583–592. doi: 10.1046/j.1365-2958.1996.00133.x. [DOI] [PubMed] [Google Scholar]
  21. Rouse D. A., Morris S. L. Molecular mechanisms of isoniazid resistance in Mycobacterium tuberculosis and Mycobacterium bovis. Infect Immun. 1995 Apr;63(4):1427–1433. doi: 10.1128/iai.63.4.1427-1433.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sherman D. R., Mdluli K., Hickey M. J., Arain T. M., Morris S. L., Barry C. E., 3rd, Stover C. K. Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science. 1996 Jun 14;272(5268):1641–1643. doi: 10.1126/science.272.5268.1641. [DOI] [PubMed] [Google Scholar]
  23. Sherman D. R., Sabo P. J., Hickey M. J., Arain T. M., Mahairas G. G., Yuan Y., Barry C. E., 3rd, Stover C. K. Disparate responses to oxidative stress in saprophytic and pathogenic mycobacteria. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6625–6629. doi: 10.1073/pnas.92.14.6625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sreevatsan S., Escalante P., Pan X., Gillies D. A., 2nd, Siddiqui S., Khalaf C. N., Kreiswirth B. N., Bifani P., Adams L. G., Ficht T. Identification of a polymorphic nucleotide in oxyR specific for Mycobacterium bovis. J Clin Microbiol. 1996 Aug;34(8):2007–2010. doi: 10.1128/jcm.34.8.2007-2010.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tartaglia L. A., Storz G., Ames B. N. Identification and molecular analysis of oxyR-regulated promoters important for the bacterial adaptation to oxidative stress. J Mol Biol. 1989 Dec 20;210(4):709–719. doi: 10.1016/0022-2836(89)90104-6. [DOI] [PubMed] [Google Scholar]
  26. Wilson T. M., Collins D. M. ahpC, a gene involved in isoniazid resistance of the Mycobacterium tuberculosis complex. Mol Microbiol. 1996 Mar;19(5):1025–1034. doi: 10.1046/j.1365-2958.1996.449980.x. [DOI] [PubMed] [Google Scholar]
  27. Zhang Y., Dhandayuthapani S., Deretic V. Molecular basis for the exquisite sensitivity of Mycobacterium tuberculosis to isoniazid. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13212–13216. doi: 10.1073/pnas.93.23.13212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zhang Y., Garbe T., Young D. Transformation with katG restores isoniazid-sensitivity in Mycobacterium tuberculosis isolates resistant to a range of drug concentrations. Mol Microbiol. 1993 May;8(3):521–524. doi: 10.1111/j.1365-2958.1993.tb01596.x. [DOI] [PubMed] [Google Scholar]
  29. Zhang Y., Heym B., Allen B., Young D., Cole S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature. 1992 Aug 13;358(6387):591–593. doi: 10.1038/358591a0. [DOI] [PubMed] [Google Scholar]
  30. van Embden J. D., Cave M. D., Crawford J. T., Dale J. W., Eisenach K. D., Gicquel B., Hermans P., Martin C., McAdam R., Shinnick T. M. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol. 1993 Feb;31(2):406–409. doi: 10.1128/jcm.31.2.406-409.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES