Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1979 Aug;31:23–25. doi: 10.1289/ehp.793123

Clustering of chromosomal aneuploidy and tracing of nondisjunction in man.

I Hansmann
PMCID: PMC1637636  PMID: 159172

Abstract

Chromosomal aneuploidy is the most frequent genetic damage observed in newborn children and originates as a rule from nondisjunction during maternal or paternal germ cell development. The error of chromosome segregation could be allocated in the past--at least in cases of 47,XXY--to maternal meiosis I (50%) or meiosis II (10%) and to paternal meiosis I (40%). Recent cytological improvements with various banding techniques enabled a further study on the origin of nondisjunction. Summarizing the published data one can argue that errors in Downs' syndrome are most often due to cleavage errors during maternal meiosis I. Approximately 70% of errors occur in oogenesis and only 30% in spermatogenesis. Maternal meiosis I seems also to be involved in most cases of fetal trisomy 16. Such a preferential missegregation of chromosomes offers the possibility of studying more closely the very mechanisms of nondisjunction in mammalian meiosis and early cleavages.

Full text

PDF
23

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker B. S., Carpenter A. T., Esposito M. S., Esposito R. E., Sandler L. The genetic control of meiosis. Annu Rev Genet. 1976;10:53–134. doi: 10.1146/annurev.ge.10.120176.000413. [DOI] [PubMed] [Google Scholar]
  2. Boué J., Boué A. Les avortements spontanés humains. Etudes cytogénétiques et épidémiologiques. Rev Fr Gynecol Obstet. 1973 Nov;68(11):625–643. [PubMed] [Google Scholar]
  3. Fabricant J. D., Schneider E. L. Studies of the genetic and immunologic components of the maternal age effect. Dev Biol. 1978 Oct;66(2):337–343. doi: 10.1016/0012-1606(78)90242-7. [DOI] [PubMed] [Google Scholar]
  4. Gagné R., Laberge C., Tanguay R. Aspect cytologique et localisation intranucléaire de l'hétérochromatine constitutive des chromosomes C9 chez l'homme. Chromosoma. 1973;41(2):159–166. doi: 10.1007/BF00319692. [DOI] [PubMed] [Google Scholar]
  5. Gagné R., Luciani J. M., Devictor-Vuillet M., Stahl A. C9 heterochromatin during the first meiotic prophase of human foetal oocyte. Exp Cell Res. 1974 Mar 30;85(1):111–116. doi: 10.1016/0014-4827(74)90219-5. [DOI] [PubMed] [Google Scholar]
  6. Hassold T., Matsuyama A. Origin of trisomies in human spontaneous abortions. Hum Genet. 1979 Feb 15;46(3):285–294. doi: 10.1007/BF00273312. [DOI] [PubMed] [Google Scholar]
  7. Licznerski G., Lindsten J. Trisomy 21 in man due to maternal non-disjunction during the first meiotic division. Hereditas. 1972;70(1):153–154. doi: 10.1111/j.1601-5223.1972.tb01003.x. [DOI] [PubMed] [Google Scholar]
  8. MANN J. D., CAHAN A., GELB A. G., FISHER N., HAMPER J., TIPPETT P., SANGER R., RACE R. R. A sex-linked blood group. Lancet. 1962 Jan 6;1(7219):8–10. doi: 10.1016/s0140-6736(62)92637-5. [DOI] [PubMed] [Google Scholar]
  9. Martin R. H., Dill F. J., Miller J. R. Nondisjunction in aging female mice. Cytogenet Cell Genet. 1976;17(3):150–160. doi: 10.1159/000130707. [DOI] [PubMed] [Google Scholar]
  10. NOWAKOWSKI H., LENZ W., PARADA J. Diskrepanz zwischen Chromatinbefund und Chromosomalem Geschlecht beim Klinefelter Syndrom. Klin Wochenschr. 1958 Jul 15;36(14):683–684. doi: 10.1007/BF01488753. [DOI] [PubMed] [Google Scholar]
  11. Nielsen J., Friedrich U., Hreidarsson A. B., Zeuthen E. Frequency of 9qh+ and risk of chromosome aberrations in the progeny of individuals with 9qh+. Humangenetik. 1974;21(3):211–216. doi: 10.1007/BF00279014. [DOI] [PubMed] [Google Scholar]
  12. Schultz R. M., Wassarman P. M. Biochemical studies of mammalian oogenesis: Protein synthesis during oocyte growth and meiotic maturation in the mouse. J Cell Sci. 1977 Apr;24:167–194. doi: 10.1242/jcs.24.1.167. [DOI] [PubMed] [Google Scholar]
  13. Yunis J. J., Yasmineh W. G. Heterochromatin, satellite DNA, and cell function. Structural DNA of eucaryotes may support and protect genes and aid in speciation. Science. 1971 Dec 17;174(4015):1200–1209. doi: 10.1126/science.174.4015.1200. [DOI] [PubMed] [Google Scholar]
  14. de Grouchy J. 21 p-maternel en double exemplaire chez un trisomique 21. Ann Genet. 1970 Mar;13(1):52–55. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES