Abstract
Since trisomies produce adverse effects relatively late in development or even postnatally, they are an important component of the array of genetic damages that might be caused by environmental agents. Whole-chromosome aneuploidy (as opposed to breakage-derived aneuploidy) might come about secondarily from crossover depression, or could follow damage to the meiotic spindle or to kinetochores. For simplicity, the event—by whichever of the mechanisms—is referred to as meiotic nondisjunction (ND). A genetic method has been devised which is based on the facts that ND involving the sex chromosomes produces mostly viable mice, and that such exceptional animals can be externally recognized by the use of appropriate markers. The method is compared with the following other ND indicators: univalent and/or chiasma frequencies at M I; number of dyads at M II; extra sex chromosomes in spermatids; karyotypes in cleavage, morula, or blastocyst metaphases; and chromosome constitution of mid-gestation embryos. Some of the cytological endpoints are found to be unreliable. Various biological variables (germ-cell stage, sex, age) are examined with a view toward maximizing the chances for detecting induced nondisjunction. While experimental evidence on this question is equivocal, a consideration of the probable ND mechanisms suggests that the early spermatocyte (in stages including the premeiotic S phase) may be a favorable test object. The numerical sex-chromosome anomaly (NSA) method is useful not only in the study of ND but also in detecting breakage-derived chromosome losses induced in females, where the dominant lethal test is not easily applicable.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BORUM K. Oogenesis in the mouse. A study of the meiotic prophase. Exp Cell Res. 1961 Sep;24:495–507. doi: 10.1016/0014-4827(61)90449-9. [DOI] [PubMed] [Google Scholar]
- Bulsiewicz H., Rozewicka L., Januszewska H., Bajko J. Aberrations of meiotic chromosomes induced in mice with insecticides. Folia Morphol (Warsz) 1976;35(3):361–368. [PubMed] [Google Scholar]
- Bulsiewicz H. The influence of phenol on chromosomes of mice (Mus musculus) in the process of spermatogenesis. Folia Morphol (Warsz) 1977;36(1):13–22. [PubMed] [Google Scholar]
- Cacheiro N. L., Russell L. B., Swartout M. S. Translocations, the predominant cause of total sterility in sons of mice treated with mutagens. Genetics. 1974 Jan;76(1):73–91. doi: 10.1093/genetics/76.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark J. M. Mutagenicity of DDT in mice, Drosophila melanogaster and Neurospora crassa. Aust J Biol Sci. 1974 Aug;27(4):427–440. doi: 10.1071/bi9740427. [DOI] [PubMed] [Google Scholar]
- Gosden R. G. Chromosomal anomalies of preimplantation mouse embryos in relation to maternal age. J Reprod Fertil. 1973 Nov;35(2):351–354. doi: 10.1530/jrf.0.0350351. [DOI] [PubMed] [Google Scholar]
- Gosden R. G., Walters D. E. Effects of low-dose x-irradiation on chromosomal non-disjunction in aged mice. Nature. 1974 Mar 1;248(5443):54–55. doi: 10.1038/248054a0. [DOI] [PubMed] [Google Scholar]
- Grell R. F. Distributive pairing in man? Ann Genet. 1971 Sep;14(3):165–171. [PubMed] [Google Scholar]
- Grell R. F. Origin of meiotic nondisjunction in Drosophila females. Environ Health Perspect. 1979 Aug;31:33–39. doi: 10.1289/ehp.793133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grell R. F. Time of recombination in the Drosophila melanogaster oocyte: evidence from a temperature-sensitive recombination-deficient mutant. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3351–3354. doi: 10.1073/pnas.75.7.3351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansmann I. Chromosome aberrations in metaphase II-oocytes. Stage sensitivity in the mouse oogenesis to amethopterin and cyclophosphamide. Mutat Res. 1974 Feb;22(2):175–191. doi: 10.1016/0027-5107(74)90098-0. [DOI] [PubMed] [Google Scholar]
- Hansmann I. Induced chromosomal aberrations in pronuclei, 2-cell stages and morulae of mice. Mutat Res. 1973 Dec;20(3):353–367. doi: 10.1016/0027-5107(73)90057-2. [DOI] [PubMed] [Google Scholar]
- Hansmann I., Reichert W., Röhrborn G. Proceedings: X-ray-induced chromosome aberrations in oocytes of mice. II. Sensitive stages in the oogenesis. Mutat Res. 1975 Aug;29(2):218–218. [PubMed] [Google Scholar]
- Hansmann I., Röhrborn G. Chromosome aberrations in preimplantation stages of mice after treatment with triazoquinone. Humangenetik. 1973 Apr 16;18(2):101–109. doi: 10.1007/BF00291476. [DOI] [PubMed] [Google Scholar]
- Henderson S. A., Edwards R. G. Chiasma frequency and maternal age in mammals. Nature. 1968 Apr 6;218(5136):22–28. doi: 10.1038/218022a0. [DOI] [PubMed] [Google Scholar]
- Jacobs P. A., Melville M., Ratcliffe S., Keay A. J., Syme J. A cytogenetic survey of 11,680 newborn infants. Ann Hum Genet. 1974 May;37(4):359–376. doi: 10.1111/j.1469-1809.1974.tb01843.x. [DOI] [PubMed] [Google Scholar]
- Luthardt F. W., Palmer C. G., Yu P. Chiasma and univalent frequencies in aging female mice. Cytogenet Cell Genet. 1973;12(1):68–79. doi: 10.1159/000130440. [DOI] [PubMed] [Google Scholar]
- Martin R. H., Dill F. J., Miller J. R. Nondisjunction in aging female mice. Cytogenet Cell Genet. 1976;17(3):150–160. doi: 10.1159/000130707. [DOI] [PubMed] [Google Scholar]
- Max C. Cytological investigation of embryos in low-dose X-irradiated young and old female inbred mice. Hereditas. 1977;85(2):199–206. doi: 10.1111/j.1601-5223.1977.tb00966.x. [DOI] [PubMed] [Google Scholar]
- OHNO S., KAPLAN W. D., KINOSITA R. Do XY- and O-sperm occur in Mus musculus? Exp Cell Res. 1959 Oct;18:382–384. doi: 10.1016/0014-4827(59)90020-5. [DOI] [PubMed] [Google Scholar]
- Polani P. E., Jagiello G. M. Chiasmata, meiotic univalents, and age in relation to aneuploid imbalance in mice. Cytogenet Cell Genet. 1976;16(6):505–529. doi: 10.1159/000130668. [DOI] [PubMed] [Google Scholar]
- Russell L. B., Montgomery C. S. The incidence of sex-chromosome anomalies following irradiation of mouse spermatogonia with single or fractionated doses of x-rays. Mutat Res. 1974 Dec;25(3):367–376. doi: 10.1016/0027-5107(74)90065-7. [DOI] [PubMed] [Google Scholar]
- Russell W. L. Results of tests for possible transmitted genetic effects of hycanthone in mammals. J Toxicol Environ Health. 1975 Nov;1(2):301–304. doi: 10.1080/15287397509529329. [DOI] [PubMed] [Google Scholar]
- Röhrborn G., Hansmann I. Induced chromosome aberrations in unfertilized oocytes of mice. Humangenetik. 1971;13(3):184–198. doi: 10.1007/BF00326941. [DOI] [PubMed] [Google Scholar]
- Röhrborn G., Hansmann I. Oral contraceptives and chromosome segregation in oocytes of mice. Mutat Res. 1974 Dec;26(6):535–544. doi: 10.1016/s0027-5107(74)80056-4. [DOI] [PubMed] [Google Scholar]
- Röhrborn G., Kühn O., Hansmann I., Thon K. Induced chromosome aberrations in early embryogenesis of mice. Humangenetik. 1971;11(4):316–322. doi: 10.1007/BF00278659. [DOI] [PubMed] [Google Scholar]
- Searle A. G., Beechey C. V. Cytogenetic effects of X-rays and fission neutrons in female mice. Mutat Res. 1974 Aug;24(2):171–186. doi: 10.1016/0027-5107(74)90130-4. [DOI] [PubMed] [Google Scholar]
- Speed R. M. The effects of ageing on the meiotic chromosomes of male and female mice. Chromosoma. 1977 Nov 30;64(3):241–254. doi: 10.1007/BF00328080. [DOI] [PubMed] [Google Scholar]
- Strausmanis R., Henrikson I. B., Holmberg M., Rönnbäck C. Lack of effect on the chromosomal non-disjunction in aged female mice after low dose X-irradiation. Mutat Res. 1978 Feb;49(2):269–274. doi: 10.1016/0027-5107(78)90165-3. [DOI] [PubMed] [Google Scholar]
- Szemere G., Chandley A. C. Trisomy and triploidy induced by X-irradiation of mouse spermatocytes. Mutat Res. 1975 Dec;33(2-3):229–238. doi: 10.1016/0027-5107(75)90199-2. [DOI] [PubMed] [Google Scholar]
- Uchida I. A., Freeman C. P. Radiation-induced nondisjunction in oocytes of aged mice. Nature. 1977 Jan 13;265(5590):186–187. doi: 10.1038/265186a0. [DOI] [PubMed] [Google Scholar]
- Uchida I. A., Lee C. P. Radiation-induced nondisjunction in mouse oocytes. Nature. 1974 Aug 16;250(467):601–602. doi: 10.1038/250601a0. [DOI] [PubMed] [Google Scholar]
- Walker H. C. Comparative sensitivities of meiotic prophase stages in male mice to chromosome damage by acute X-and chronic gamma-irradiation. Mutat Res. 1977 Sep;44(3):427–432. doi: 10.1016/0027-5107(77)90100-2. [DOI] [PubMed] [Google Scholar]
- White B. J., Tjio J. H., Van de Water L. C., Crandall C. Trisomy for the smallest autosome of the mouse and identification of the T1Wh translocation chromosome. Cytogenetics. 1972;11(5):363–378. doi: 10.1159/000130203. [DOI] [PubMed] [Google Scholar]
- Yamamoto M., Endo A., Watanabe G. Maternal age dependence of chromosome anomalies. Nat New Biol. 1973 Jan 31;241(109):141–142. doi: 10.1038/newbio241141a0. [DOI] [PubMed] [Google Scholar]
- Yamamoto M., Shimada T., Endo A., Watanabe G. Effects of low-dose x irradiation on the chromosomal non-disjunction in aged mice. Nat New Biol. 1973 Aug 15;244(137):206–208. doi: 10.1038/newbio244206a0. [DOI] [PubMed] [Google Scholar]
