Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Mar;41(3):636–640. doi: 10.1128/aac.41.3.636

Mutations associated with pyrazinamide resistance in pncA of Mycobacterium tuberculosis complex organisms.

S Sreevatsan 1, X Pan 1, Y Zhang 1, B N Kreiswirth 1, J M Musser 1
PMCID: PMC163764  PMID: 9056006

Abstract

A gene (pncA) with mutations associated with pyrazinamide resistance in Mycobacterium tuberculosis complex members was characterized in 67 pyrazinamide-resistant and 51 pyrazinamide-susceptible isolates recovered from diverse geographic localities and anatomic sites and typed by IS6110 profiling. All pyrazinamide-susceptible organisms had identical pncA alleles. In striking contrast, 72% of the 67 resistant organisms had pncA mutations that altered the primary amino acid sequence of pyrazinamidase. A total of 17 previously undescribed mutations were found, including upstream mutations, missense changes, nucleotide insertions and deletions, and termination mutations. The mutations were arrayed along virtually the entire length of the gene. These data are further evidence that most drug resistance in M. tuberculosis is due to simple mutations occurring in chromosomally encoded genes rather than to acquisition of resistance genes by horizontal transfer events.

Full Text

The Full Text of this article is available as a PDF (103.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bifani P. J., Plikaytis B. B., Kapur V., Stockbauer K., Pan X., Lutfey M. L., Moghazeh S. L., Eisner W., Daniel T. M., Kaplan M. H. Origin and interstate spread of a New York City multidrug-resistant Mycobacterium tuberculosis clone family. JAMA. 1996 Feb 14;275(6):452–457. [PubMed] [Google Scholar]
  2. Bodmer T., Zürcher G., Imboden P., Telenti A. Mutation position and type of substitution in the beta-subunit of the RNA polymerase influence in-vitro activity of rifamycins in rifampicin-resistant Mycobacterium tuberculosis. J Antimicrob Chemother. 1995 Feb;35(2):345–348. doi: 10.1093/jac/35.2.345. [DOI] [PubMed] [Google Scholar]
  3. Butler W. R., Kilburn J. O. Improved method for testing susceptibility of Mycobacterium tuberculosis to pyrazinamide. J Clin Microbiol. 1982 Dec;16(6):1106–1109. doi: 10.1128/jcm.16.6.1106-1109.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cooksey R. C., Morlock G. P., McQueen A., Glickman S. E., Crawford J. T. Characterization of streptomycin resistance mechanisms among Mycobacterium tuberculosis isolates from patients in New York City. Antimicrob Agents Chemother. 1996 May;40(5):1186–1188. doi: 10.1128/aac.40.5.1186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Del Portillo P., Murillo L. A., Patarroyo M. E. Amplification of a species-specific DNA fragment of Mycobacterium tuberculosis and its possible use in diagnosis. J Clin Microbiol. 1991 Oct;29(10):2163–2168. doi: 10.1128/jcm.29.10.2163-2168.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dickinson J. M., Mitchison D. A. Observations in vitro on the suitability of pyrazinamide for intermittent chemotherapy of tuberculosis. Tubercle. 1970 Dec;51(4):389–396. doi: 10.1016/0041-3879(70)90004-8. [DOI] [PubMed] [Google Scholar]
  7. Heifets L., Lindholm-Levy P. Pyrazinamide sterilizing activity in vitro against semidormant Mycobacterium tuberculosis bacterial populations. Am Rev Respir Dis. 1992 May;145(5):1223–1225. doi: 10.1164/ajrccm/145.5.1223. [DOI] [PubMed] [Google Scholar]
  8. Hewlett D., Jr, Horn D. L., Alfalla C. Drug-resistant tuberculosis: inconsistent results of pyrazinamide susceptibility testing. JAMA. 1995 Mar 22;273(12):916–917. [PubMed] [Google Scholar]
  9. Kapur V., Li L. L., Hamrick M. R., Plikaytis B. B., Shinnick T. M., Telenti A., Jacobs W. R., Jr, Banerjee A., Cole S., Yuen K. Y. Rapid Mycobacterium species assignment and unambiguous identification of mutations associated with antimicrobial resistance in Mycobacterium tuberculosis by automated DNA sequencing. Arch Pathol Lab Med. 1995 Feb;119(2):131–138. [PubMed] [Google Scholar]
  10. Kapur V., Li L. L., Iordanescu S., Hamrick M. R., Wanger A., Kreiswirth B. N., Musser J. M. Characterization by automated DNA sequencing of mutations in the gene (rpoB) encoding the RNA polymerase beta subunit in rifampin-resistant Mycobacterium tuberculosis strains from New York City and Texas. J Clin Microbiol. 1994 Apr;32(4):1095–1098. doi: 10.1128/jcm.32.4.1095-1098.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kapur V., Whittam T. S., Musser J. M. Is Mycobacterium tuberculosis 15,000 years old? J Infect Dis. 1994 Nov;170(5):1348–1349. doi: 10.1093/infdis/170.5.1348. [DOI] [PubMed] [Google Scholar]
  12. Konno K., Feldmann F. M., McDermott W. Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am Rev Respir Dis. 1967 Mar;95(3):461–469. doi: 10.1164/arrd.1967.95.3.461. [DOI] [PubMed] [Google Scholar]
  13. Levinson G., Gutman G. A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol. 1987 May;4(3):203–221. doi: 10.1093/oxfordjournals.molbev.a040442. [DOI] [PubMed] [Google Scholar]
  14. Mitchison D. A. The action of antituberculosis drugs in short-course chemotherapy. Tubercle. 1985 Sep;66(3):219–225. doi: 10.1016/0041-3879(85)90040-6. [DOI] [PubMed] [Google Scholar]
  15. Moghazeh S. L., Pan X., Arain T., Stover C. K., Musser J. M., Kreiswirth B. N. Comparative antimycobacterial activities of rifampin, rifapentine, and KRM-1648 against a collection of rifampin-resistant Mycobacterium tuberculosis isolates with known rpoB mutations. Antimicrob Agents Chemother. 1996 Nov;40(11):2655–2657. doi: 10.1128/aac.40.11.2655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Murphy G. L., Connell T. D., Barritt D. S., Koomey M., Cannon J. G. Phase variation of gonococcal protein II: regulation of gene expression by slipped-strand mispairing of a repetitive DNA sequence. Cell. 1989 Feb 24;56(4):539–547. doi: 10.1016/0092-8674(89)90577-1. [DOI] [PubMed] [Google Scholar]
  17. Musser J. M. Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin Microbiol Rev. 1995 Oct;8(4):496–514. doi: 10.1128/cmr.8.4.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Musser J. M., Kapur V., Szeto J., Pan X., Swanson D. S., Martin D. R. Genetic diversity and relationships among Streptococcus pyogenes strains expressing serotype M1 protein: recent intercontinental spread of a subclone causing episodes of invasive disease. Infect Immun. 1995 Mar;63(3):994–1003. doi: 10.1128/iai.63.3.994-1003.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Musser J. M., Kapur V., Williams D. L., Kreiswirth B. N., van Soolingen D., van Embden J. D. Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing: restricted array of mutations associated with drug resistance. J Infect Dis. 1996 Jan;173(1):196–202. doi: 10.1093/infdis/173.1.196. [DOI] [PubMed] [Google Scholar]
  20. Ohno H., Koga H., Kohno S., Tashiro T., Hara K. Relationship between rifampin MICs for and rpoB mutations of Mycobacterium tuberculosis strains isolated in Japan. Antimicrob Agents Chemother. 1996 Apr;40(4):1053–1056. doi: 10.1128/aac.40.4.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Salfinger M., Heifets L. B. Determination of pyrazinamide MICs for Mycobacterium tuberculosis at different pHs by the radiometric method. Antimicrob Agents Chemother. 1988 Jul;32(7):1002–1004. doi: 10.1128/aac.32.7.1002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Scorpio A., Zhang Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med. 1996 Jun;2(6):662–667. doi: 10.1038/nm0696-662. [DOI] [PubMed] [Google Scholar]
  23. Speirs R. J., Welch J. T., Cynamon M. H. Activity of n-propyl pyrazinoate against pyrazinamide-resistant Mycobacterium tuberculosis: investigations into mechanism of action of and mechanism of resistance to pyrazinamide. Antimicrob Agents Chemother. 1995 Jun;39(6):1269–1271. doi: 10.1128/aac.39.6.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sreevatsan S., Escalante P., Pan X., Gillies D. A., 2nd, Siddiqui S., Khalaf C. N., Kreiswirth B. N., Bifani P., Adams L. G., Ficht T. Identification of a polymorphic nucleotide in oxyR specific for Mycobacterium bovis. J Clin Microbiol. 1996 Aug;34(8):2007–2010. doi: 10.1128/jcm.34.8.2007-2010.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wayne L. G. Simple pyrazinamidase and urease tests for routine identification of mycobacteria. Am Rev Respir Dis. 1974 Jan;109(1):147–151. doi: 10.1164/arrd.1974.109.1.147. [DOI] [PubMed] [Google Scholar]
  26. Xu C., Kreiswirth B. N., Sreevatsan S., Musser J. M., Drlica K. Fluoroquinolone resistance associated with specific gyrase mutations in clinical isolates of multidrug-resistant Mycobacterium tuberculosis. J Infect Dis. 1996 Nov;174(5):1127–1130. doi: 10.1093/infdis/174.5.1127. [DOI] [PubMed] [Google Scholar]
  27. YEAGER R. L., MUNROE W. G. C., DESSAU F. I. Pyrazinamide (aldinamide) in the treatment of pulmonary tuberculosis. Am Rev Tuberc. 1952 May;65(5):523–546. [PubMed] [Google Scholar]
  28. van Embden J. D., Cave M. D., Crawford J. T., Dale J. W., Eisenach K. D., Gicquel B., Hermans P., Martin C., McAdam R., Shinnick T. M. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol. 1993 Feb;31(2):406–409. doi: 10.1128/jcm.31.2.406-409.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES