Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Mar;41(3):677–686. doi: 10.1128/aac.41.3.677

Antimalarial activity of the bisquinoline trans-N1,N2-bis (7-chloroquinolin-4-yl)cyclohexane-1,2-diamine: comparison of two stereoisomers and detailed evaluation of the S,S enantiomer, Ro 47-7737.

R G Ridley 1, H Matile 1, C Jaquet 1, A Dorn 1, W Hofheinz 1, W Leupin 1, R Masciadri 1, F P Theil 1, W F Richter 1, M A Girometta 1, A Guenzi 1, H Urwyler 1, E Gocke 1, J M Potthast 1, M Csato 1, A Thomas 1, W Peters 1
PMCID: PMC163771  PMID: 9056013

Abstract

The S,S enantiomer of the bisquinoline trans-N1,N2-bis(7-chloroquinolin-4-yl)cyclohexane-1,2-diamine, Ro 47-7737, is significantly more potent against chloroquine-resistant Plasmodium falciparum than the R,R enantiomer and the previously described racemate. Both the enantiomers and the racemate are more potent inhibitors of heme polymerization than chloroquine, and their activities are probably mediated by inhibition of this parasite-specific process. The S,S enantiomer, Ro 47-7737, was studied in more detail and proved to be a potent antimalarial in the treatment of P. vivax ex vivo and P. berghei in vivo. Its suppression of P. berghei growth in a mouse model (50% effective dose, 2.3 mg/kg of body weight) was equal to that of chloroquine and mefloquine, and Ro 47-7737 was found to be more potent than these two drugs in the Rane test, in which the curative effect of a single dose is monitored. The dose at which 50% of animals were permanently cured (34 mg/kg) was markedly superior to those of chloroquine (285 mg/kg) and mefloquine (> 250 mg/kg). When administered orally at 50 mg/kg, Ro 47-7737 also showed a faster clearance of parasites than either chloroquine or mefloquine, and unlike the other two compounds, Ro 47-7737 showed no recrudescence. In a study to compare prophylactic efficacies of oral doses of 50 mg/kg, Ro 47-7737 provided protection for 14 days compared to 3 days for mefloquine and 1 day for chloroquine. The good curative and prophylactic properties of the compound can be explained in part by its long terminal half-life. The ability to generate parasite resistance to Ro 47-7737 was also assessed. With a rodent model, resistance could be generated over eight passages. This rate of resistance generation is comparable to that of mefloquine, which has proved to be an effective antimalarial for many years. Toxicity liabilities, however, ruled out this compound as a candidate for drug development.

Full Text

The Full Text of this article is available as a PDF (214.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asawamahasakda W., Ittarat I., Chang C. C., McElroy P., Meshnick S. R. Effects of antimalarials and protease inhibitors on plasmodial hemozoin production. Mol Biochem Parasitol. 1994 Oct;67(2):183–191. doi: 10.1016/0166-6851(94)00128-6. [DOI] [PubMed] [Google Scholar]
  2. Basco L. K., Andersen S. L., Milhous W. K., Le Bras J., Vennerstrom J. L. In vitro activity of bisquinoline WR268,668 against African clones and isolates of Plasmodium falciparum. Am J Trop Med Hyg. 1994 Feb;50(2):200–205. doi: 10.4269/ajtmh.1994.50.200. [DOI] [PubMed] [Google Scholar]
  3. Desjardins R. E., Canfield C. J., Haynes J. D., Chulay J. D. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979 Dec;16(6):710–718. doi: 10.1128/aac.16.6.710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dorn A., Stoffel R., Matile H., Bubendorf A., Ridley R. G. Malarial haemozoin/beta-haematin supports haem polymerization in the absence of protein. Nature. 1995 Mar 16;374(6519):269–271. doi: 10.1038/374269a0. [DOI] [PubMed] [Google Scholar]
  5. Fontanet A. L., Johnston B. D., Walker A. M., Bergqvist Y., Hellgren U., Rooney W. Falciparum malaria in eastern Thailand: a randomized trial of the efficacy of a single dose of mefloquine. Bull World Health Organ. 1994;72(1):73–78. [PMC free article] [PubMed] [Google Scholar]
  6. Fontanet A. L., Johnston D. B., Walker A. M., Rooney W., Thimasarn K., Sturchler D., Macdonald M., Hours M., Wirth D. F. High prevalence of mefloquine-resistant falciparum malaria in eastern Thailand. Bull World Health Organ. 1993;71(3-4):377–383. [PMC free article] [PubMed] [Google Scholar]
  7. Huber W., Hurt N., Mshinda H., Jaquet C., Koella J. C., Tanner M. Sensitivity of Plasmodium falciparum field-isolates from Tanzania to chloroquine, mefloquine and pyrimethamine during in vitro cultivation. Acta Trop. 1993 Jan;52(4):313–316. doi: 10.1016/0001-706x(93)90016-5. [DOI] [PubMed] [Google Scholar]
  8. Janse C. J., Camargo A., Del Portillo H. A., Herrera S., Kumlien S., Mons B., Thomas A., Waters A. P. Removal of leucocytes from Plasmodium vivax-infected blood. Ann Trop Med Parasitol. 1994 Apr;88(2):213–216. doi: 10.1080/00034983.1994.11812860. [DOI] [PubMed] [Google Scholar]
  9. Jaquet C., Stohler H. R., Chollet J., Peters W. Antimalarial activity of the bicyclic peroxide Ro 42-1611 (arteflene) in experimental models. Trop Med Parasitol. 1994 Sep;45(3):266–271. [PubMed] [Google Scholar]
  10. Miller B. M., Pujadas E., Gocke E. Evaluation of the micronucleus test in vitro using Chinese hamster cells: results of four chemicals weakly positive in the in vivo micronucleus test. Environ Mol Mutagen. 1995;26(3):240–247. doi: 10.1002/em.2850260309. [DOI] [PubMed] [Google Scholar]
  11. Nosten F., Price R. N. New antimalarials. A risk-benefit analysis. Drug Saf. 1995 Apr;12(4):264–273. doi: 10.2165/00002018-199512040-00006. [DOI] [PubMed] [Google Scholar]
  12. Palmer K. J., Holliday S. M., Brogden R. N. Mefloquine. A review of its antimalarial activity, pharmacokinetic properties and therapeutic efficacy. Drugs. 1993 Mar;45(3):430–475. doi: 10.2165/00003495-199345030-00009. [DOI] [PubMed] [Google Scholar]
  13. Peters W. The chemotherapy of rodent malaria, XXII. The value of drug-resistant strains of P. berghei in screening for blood schizontocidal activity. Ann Trop Med Parasitol. 1975 Jun;69(2):155–171. [PubMed] [Google Scholar]
  14. Ramkaran A. E., Peters W. Infectivity of chloroquine resistant Plasmodium berghei to Anopheles stephensi enhanced by chloroquine. Nature. 1969 Aug 9;223(5206):635–636. doi: 10.1038/223635a0. [DOI] [PubMed] [Google Scholar]
  15. Ridley R. G., Hofheinz W., Matile H., Jaquet C., Dorn A., Masciadri R., Jolidon S., Richter W. F., Guenzi A., Girometta M. A. 4-aminoquinoline analogs of chloroquine with shortened side chains retain activity against chloroquine-resistant Plasmodium falciparum. Antimicrob Agents Chemother. 1996 Aug;40(8):1846–1854. doi: 10.1128/aac.40.8.1846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schofield P., Howells R. E., Peters W. A technique for the selection of long-acting antimalarial compounds using a rodent malaria model. Ann Trop Med Parasitol. 1981 Oct;75(5):521–531. doi: 10.1080/00034983.1981.11687476. [DOI] [PubMed] [Google Scholar]
  17. Slater A. F., Cerami A. Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites. Nature. 1992 Jan 9;355(6356):167–169. doi: 10.1038/355167a0. [DOI] [PubMed] [Google Scholar]
  18. Slater A. F. Chloroquine: mechanism of drug action and resistance in Plasmodium falciparum. Pharmacol Ther. 1993 Feb-Mar;57(2-3):203–235. doi: 10.1016/0163-7258(93)90056-j. [DOI] [PubMed] [Google Scholar]
  19. Trager W., Jensen J. B. Human malaria parasites in continuous culture. Science. 1976 Aug 20;193(4254):673–675. doi: 10.1126/science.781840. [DOI] [PubMed] [Google Scholar]
  20. Vennerstrom J. L., Ellis W. Y., Ager A. L., Jr, Andersen S. L., Gerena L., Milhous W. K. Bisquinolines. 1. N,N-bis(7-chloroquinolin-4-yl)alkanediamines with potential against chloroquine-resistant malaria. J Med Chem. 1992 May 29;35(11):2129–2134. doi: 10.1021/jm00089a025. [DOI] [PubMed] [Google Scholar]
  21. White N. J. Antimalarial drug resistance: the pace quickens. J Antimicrob Chemother. 1992 Nov;30(5):571–585. doi: 10.1093/jac/30.5.571. [DOI] [PubMed] [Google Scholar]
  22. Yayon A., Cabantchik Z. I., Ginsburg H. Susceptibility of human malaria parasites to chloroquine is pH dependent. Proc Natl Acad Sci U S A. 1985 May;82(9):2784–2788. doi: 10.1073/pnas.82.9.2784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. van Es H. H., Skamene E., Schurr E. Chemotherapy of malaria: a battle against all odds? Clin Invest Med. 1993 Aug;16(4):285–293. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES