Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2000 May;108(Suppl 2):323–334. doi: 10.1289/ehp.00108s2323

Evaluating noncancer effects of trichloroethylene: dosimetry, mode of action, and risk assessment.

H A Barton 1, H J Clewell 3rd 1
PMCID: PMC1637754  PMID: 10807562

Abstract

Alternatives for developing chronic exposure limits for noncancer effects of trichloroethylene (TCE) were evaluated. These alternatives were organized within a framework for dose-response assessment--exposure:dosimetry (pharmacokinetics):mode of action (pharmacodynamics): response. This framework provides a consistent structure within which to make scientific judgments about available information, its interpretation, and use. These judgments occur in the selection of critical studies, internal dose metrics, pharmacokinetic models, approaches for interspecies extrapolation of pharmacodynamics, and uncertainty factors. Potentially limiting end points included developmental eye malformations, liver effects, immunotoxicity, and kidney toxicity from oral exposure and neurological, liver, and kidney effects by inhalation. Each end point was evaluated quantitatively using several methods. Default analyses used the traditional no-observed adverse effect level divided by uncertainty factors and the benchmark dose divided by uncertainty factors methods. Subsequently, mode-of-action and pharmacokinetic information were incorporated. Internal dose metrics were estimated using a physiologically based pharmacokinetic (PBPK) model for TCE and its major metabolites. This approach was notably useful with neurological and kidney toxicities. The human PBPK model provided estimates of human exposure doses for the internal dose metrics. Pharmacodynamic data or default assumptions were used for interspecies extrapolation. For liver and neurological effects, humans appear no more sensitive than rodents when internal dose metrics were considered. Therefore, the interspecies uncertainty factor was reduced, illustrating that uncertainty factors are a semiquantitative approach fitting into the organizational framework. Incorporation of pharmacokinetics and pharmacodynamics can result in values that differ significantly from those obtained with the default methods.

Full text

PDF
323

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen B. C., Kavlock R. J., Kimmel C. A., Faustman E. M. Dose-response assessment for developmental toxicity. III. Statistical models. Fundam Appl Toxicol. 1994 Nov;23(4):496–509. doi: 10.1006/faat.1994.1134. [DOI] [PubMed] [Google Scholar]
  2. Annau Z. The neurobehavioral toxicity of trichloroethylene. Neurobehav Toxicol Teratol. 1981 Winter;3(4):417–424. [PubMed] [Google Scholar]
  3. Aranyi C., O'Shea W. J., Graham J. A., Miller F. J. The effects of inhalation of organic chemical air contaminants on murine lung host defenses. Fundam Appl Toxicol. 1986 May;6(4):713–720. doi: 10.1016/0272-0590(86)90184-3. [DOI] [PubMed] [Google Scholar]
  4. Arito H., Takahashi M., Ishikawa T. Effect of subchronic inhalation exposure to low-level trichloroethylene on heart rate and wakefulness-sleep in freely moving rats. Sangyo Igaku. 1994 Jan;36(1):1–8. doi: 10.1539/joh1959.36.1. [DOI] [PubMed] [Google Scholar]
  5. Barnes D. G., Daston G. P., Evans J. S., Jarabek A. M., Kavlock R. J., Kimmel C. A., Park C., Spitzer H. L. Benchmark Dose Workshop: criteria for use of a benchmark dose to estimate a reference dose. Regul Toxicol Pharmacol. 1995 Apr;21(2):296–306. doi: 10.1006/rtph.1995.1043. [DOI] [PubMed] [Google Scholar]
  6. Barret L., Torch S., Leray C. L., Sarliève L., Saxod R. Morphometric and biochemical studies in trigeminal nerve of rat after trichloroethylene or dichloroacetylene oral administration. Neurotoxicology. 1992 Fall;13(3):601–614. [PubMed] [Google Scholar]
  7. Barton H. A., Das S. Alternatives for a risk assessment on chronic noncancer effects from oral exposure to trichloroethylene. Regul Toxicol Pharmacol. 1996 Dec;24(3):269–285. doi: 10.1006/rtph.1996.0140. [DOI] [PubMed] [Google Scholar]
  8. Barton H. A., Flemming C. D., Lipscomb J. C. Evaluating human variability in chemical risk assessment: hazard identification and dose-response assessment for noncancer oral toxicity of trichloroethylene. Toxicology. 1996 Jul 17;111(1-3):271–287. doi: 10.1016/0300-483x(96)03382-3. [DOI] [PubMed] [Google Scholar]
  9. Berman E., Schlicht M., Moser V. C., MacPhail R. C. A multidisciplinary approach to toxicological screening: I. Systemic toxicity. J Toxicol Environ Health. 1995 Jun;45(2):127–143. doi: 10.1080/15287399509531986. [DOI] [PubMed] [Google Scholar]
  10. Blain L., Lachapelle P., Molotchnikoff S. Electroretinal responses are modified by chronic exposure to trichloroethylene. Neurotoxicology. 1994 Fall;15(3):627–631. [PubMed] [Google Scholar]
  11. Borzelleca J. F., O'Hara T. M., Gennings C., Granger R. H., Sheppard M. A., Condie L. W., Jr Interactions of water contaminants. I. Plasma enzyme activity and response surface methodology following gavage administration of CCl4 and CHCl3 or TCE singly and in combination in the rat. Fundam Appl Toxicol. 1990 Apr;14(3):477–490. doi: 10.1016/0272-0590(90)90252-f. [DOI] [PubMed] [Google Scholar]
  12. Boyes W. K., Bushnell P. J., Crofton K. M., Evans M., Simmons J. E. Neurotoxic and pharmacokinetic responses to trichloroethylene as a function of exposure scenario. Environ Health Perspect. 2000 May;108 (Suppl 2):317–322. doi: 10.1289/ehp.00108s2317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Breimer D. D. Clinical pharmacokinetics of hypnotics. Clin Pharmacokinet. 1977 Mar-Apr;2(2):93–109. doi: 10.2165/00003088-197702020-00002. [DOI] [PubMed] [Google Scholar]
  14. Buben J. A., O'Flaherty E. J. Delineation of the role of metabolism in the hepatotoxicity of trichloroethylene and perchloroethylene: a dose-effect study. Toxicol Appl Pharmacol. 1985 Mar 30;78(1):105–122. doi: 10.1016/0041-008x(85)90310-2. [DOI] [PubMed] [Google Scholar]
  15. Clewell H. J., 3rd, Gentry P. R., Gearhart J. M. Investigation of the potential impact of benchmark dose and pharmacokinetic modeling in noncancer risk assessment. J Toxicol Environ Health. 1997 Dec 26;52(6):475–515. doi: 10.1080/00984109708984077. [DOI] [PubMed] [Google Scholar]
  16. Clewell H. J., Gentry P. R., Gearhart J. M., Allen B. C., Andersen M. E. Considering pharmacokinetic and mechanistic information in cancer risk assessments for environmental contaminants: examples with vinyl chloride and trichloroethylene. Chemosphere. 1995 Jul;31(1):2561–2578. doi: 10.1016/0045-6535(95)00124-q. [DOI] [PubMed] [Google Scholar]
  17. Corbett T. H., Cornell R. G., Endres J. L., Lieding K. Birth defects among children of nurse-anesthetists. Anesthesiology. 1974 Oct;41(4):341–344. [PubMed] [Google Scholar]
  18. Cosby N. C., Dukelow W. R. Toxicology of maternally ingested trichloroethylene (TCE) on embryonal and fetal development in mice and of TCE metabolites on in vitro fertilization. Fundam Appl Toxicol. 1992 Aug;19(2):268–274. doi: 10.1016/0272-0590(92)90160-j. [DOI] [PubMed] [Google Scholar]
  19. Cresteil T. Onset of xenobiotic metabolism in children: toxicological implications. Food Addit Contam. 1998;15 (Suppl):45–51. doi: 10.1080/02652039809374614. [DOI] [PubMed] [Google Scholar]
  20. Crump K. S. A new method for determining allowable daily intakes. Fundam Appl Toxicol. 1984 Oct;4(5):854–871. doi: 10.1016/0272-0590(84)90107-6. [DOI] [PubMed] [Google Scholar]
  21. Davidson I. W., Beliles R. P. Consideration of the target organ toxicity of trichloroethylene in terms of metabolite toxicity and pharmacokinetics. Drug Metab Rev. 1991;23(5-6):493–599. doi: 10.3109/03602539109029772. [DOI] [PubMed] [Google Scholar]
  22. Dawson B. V., Johnson P. D., Goldberg S. J., Ulreich J. B. Cardiac teratogenesis of halogenated hydrocarbon-contaminated drinking water. J Am Coll Cardiol. 1993 May;21(6):1466–1472. doi: 10.1016/0735-1097(93)90325-u. [DOI] [PubMed] [Google Scholar]
  23. DeAngelo A. B., Daniel F. B., McMillan L., Wernsing P., Savage R. E., Jr Species and strain sensitivity to the induction of peroxisome proliferation by chloroacetic acids. Toxicol Appl Pharmacol. 1989 Nov;101(2):285–298. doi: 10.1016/0041-008x(89)90277-9. [DOI] [PubMed] [Google Scholar]
  24. Dorfmueller M. A., Henne S. P., York R. G., Bornschein R. L., Manson J. M. Evaluation of teratogenicity and behavioral toxicity with inhalation exposure of maternal rats to trichloroethylene. Toxicology. 1979 Oct;14(2):153–166. doi: 10.1016/0300-483x(79)90061-1. [DOI] [PubMed] [Google Scholar]
  25. Dourson M. L., Stara J. F. Regulatory history and experimental support of uncertainty (safety) factors. Regul Toxicol Pharmacol. 1983 Sep;3(3):224–238. doi: 10.1016/0273-2300(83)90030-2. [DOI] [PubMed] [Google Scholar]
  26. Elcombe C. R., Rose M. S., Pratt I. S. Biochemical, histological, and ultrastructural changes in rat and mouse liver following the administration of trichloroethylene: possible relevance to species differences in hepatocarcinogenicity. Toxicol Appl Pharmacol. 1985 Jul;79(3):365–376. doi: 10.1016/0041-008x(85)90135-8. [DOI] [PubMed] [Google Scholar]
  27. Elcombe C. R. Species differences in carcinogenicity and peroxisome proliferation due to trichloroethylene: a biochemical human hazard assessment. Arch Toxicol Suppl. 1985;8:6–17. doi: 10.1007/978-3-642-69928-3_2. [DOI] [PubMed] [Google Scholar]
  28. Epstein D. L., Nolen G. A., Randall J. L., Christ S. A., Read E. J., Stober J. A., Smith M. K. Cardiopathic effects of dichloroacetate in the fetal Long-Evans rat. Teratology. 1992 Sep;46(3):225–235. doi: 10.1002/tera.1420460306. [DOI] [PubMed] [Google Scholar]
  29. Feldman R. G., Chirico-Post J., Proctor S. P. Blink reflex latency after exposure to trichloroethylene in well water. Arch Environ Health. 1988 Mar-Apr;43(2):143–148. doi: 10.1080/00039896.1988.9935843. [DOI] [PubMed] [Google Scholar]
  30. GOLDBERG M. E., JOHNSON H. E., POZZANI U. C., SMYTH H. F., Jr BEHAVIOURAL RESPONSE OF RATS DURING INHALATION OF TRICHLORETHYLENE AND CARBON DISULPHIDE VAPOURS. Acta Pharmacol Toxicol (Copenh) 1964;21:36–44. doi: 10.1111/j.1600-0773.1964.tb01766.x. [DOI] [PubMed] [Google Scholar]
  31. Gist G. L., Burg J. R. Trichloroethylene--a review of the literature from a health effects perspective. Toxicol Ind Health. 1995 May-Jun;11(3):253–307. doi: 10.1177/074823379501100301. [DOI] [PubMed] [Google Scholar]
  32. Goel S. K., Rao G. S., Pandya K. P., Shanker R. Trichloroethylene toxicity in mice: a biochemical, hematological and pathological assessment. Indian J Exp Biol. 1992 May;30(5):402–406. [PubMed] [Google Scholar]
  33. Goeptar A. R., Commandeur J. N., van Ommen B., van Bladeren P. J., Vermeulen N. P. Metabolism and kinetics of trichloroethylene in relation to toxicity and carcinogenicity. Relevance of the mercapturic acid pathway. Chem Res Toxicol. 1995 Jan-Feb;8(1):3–21. doi: 10.1021/tx00043a001. [DOI] [PubMed] [Google Scholar]
  34. Haglid K. G., Briving C., Hansson H. A., Rosengren L., Kjellstrand P., Stavron D., Swedin U., Wronski A. Trichloroethylene: long-lasting changes in the brain after rehabilitation. Neurotoxicology. 1981 Dec;2(4):659–673. [PubMed] [Google Scholar]
  35. Hardin B. D., Bond G. P., Sikov M. R., Andrew F. D., Beliles R. P., Niemeier R. W. Testing of selected workplace chemicals for teratogenic potential. Scand J Work Environ Health. 1981;7 (Suppl 4):66–75. [PubMed] [Google Scholar]
  36. Healy T. E., Poole T. R., Hopper A. Rat fetal development and maternal exposure to trichloroethylene 100 p.p.m. Br J Anaesth. 1982 Mar;54(3):337–341. doi: 10.1093/bja/54.3.337. [DOI] [PubMed] [Google Scholar]
  37. Henschler D., Elsässer H., Romen W., Eder E. Carcinogenicity study of trichloroethylene, with and without epoxide stabilizers, in mice. J Cancer Res Clin Oncol. 1984;107(3):149–156. doi: 10.1007/BF01032599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Hobara T., Kobayashi H., Higashihara E., Kawamoto T., Sakai T. Acute effects of 1,1,1-trichloroethane, trichloroethylene, and toluene on the hematologic parameters in dogs. Arch Environ Contam Toxicol. 1984 Sep;13(5):589–593. doi: 10.1007/BF01056337. [DOI] [PubMed] [Google Scholar]
  39. Isaacson L. G., Spohler S. A., Taylor D. H. Trichloroethylene affects learning and decreases myelin in the rat hippocampus. Neurotoxicol Teratol. 1990 Jul-Aug;12(4):375–381. doi: 10.1016/0892-0362(90)90057-j. [DOI] [PubMed] [Google Scholar]
  40. Johnson P. D., Dawson B. V., Goldberg S. J. A review: trichloroethylene metabolites: potential cardiac teratogens. Environ Health Perspect. 1998 Aug;106 (Suppl 4):995–999. doi: 10.1289/ehp.98106s4995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Johnson P. D., Dawson B. V., Goldberg S. J. Cardiac teratogenicity of trichloroethylene metabolites. J Am Coll Cardiol. 1998 Aug;32(2):540–545. doi: 10.1016/s0735-1097(98)00232-0. [DOI] [PubMed] [Google Scholar]
  42. Kauffmann B. M., White K. L., Jr, Sanders V. M., Douglas K. A., Sain L. E., Borzelleca J. F., Munson A. E. Humoral and cell-mediated immune status in mice exposed to chloral hydrate. Environ Health Perspect. 1982 Apr;44:147–151. doi: 10.1289/ehp.8244147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Ketcha M. M., Stevens D. K., Warren D. A., Bishop C. T., Brashear W. T. Conversion of trichloroacetic acid to dichloroacetic acid in biological samples. J Anal Toxicol. 1996 Jul-Aug;20(4):236–241. doi: 10.1093/jat/20.4.236. [DOI] [PubMed] [Google Scholar]
  44. Kilburn K. H., Warshaw R. H. Effects on neurobehavioral performance of chronic exposure to chemically contaminated well water. Toxicol Ind Health. 1993 May-Jun;9(3):391–404. doi: 10.1177/074823379300900301. [DOI] [PubMed] [Google Scholar]
  45. Kimmerle G., Eben A. Metabolism, excretion and toxicology of trichloroethylene after inhalation. 1. Experimental exposure on rats. Arch Toxikol. 1973;30(2):115–126. doi: 10.1007/BF02425929. [DOI] [PubMed] [Google Scholar]
  46. Kishi R., Harabuchi I., Ikeda T., Katakura Y., Miyake H. Acute effects of trichloroethylene on blood concentrations and performance decrements in rats and their relevance to humans. Br J Ind Med. 1993 May;50(5):470–480. doi: 10.1136/oem.50.5.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Kjellstrand P., Edström A., Bjerkemo M., Holmquist B. Effects of trichloroethylene inhalation on acid phosphatase in rodent brain. Toxicol Lett. 1982 Jan;10(1):1–5. doi: 10.1016/0378-4274(82)90258-2. [DOI] [PubMed] [Google Scholar]
  48. Kjellstrand P., Holmquist B., Alm P., Kanje M., Romare S., Jonsson I., Månsson L., Bjerkemo M. Trichloroethylene: further studies of the effects on body and organ weights and plasma butyrylcholinesterase activity in mice. Acta Pharmacol Toxicol (Copenh) 1983 Nov;53(5):375–384. doi: 10.1111/j.1600-0773.1983.tb03438.x. [DOI] [PubMed] [Google Scholar]
  49. Kjellstrand P., Holmquist B., Mandahl N., Bjerkemo M. Effects of continuous trichloroethylene inhalation on different strains of mice. Acta Pharmacol Toxicol (Copenh) 1983 Nov;53(5):369–374. doi: 10.1111/j.1600-0773.1983.tb03437.x. [DOI] [PubMed] [Google Scholar]
  50. Kjellstrand P., Kanje M., Bjerkemo M. Regeneration of the sciatic nerve in mice and rats exposed to trichloroethylene. Toxicol Lett. 1987 Sep;38(1-2):187–191. doi: 10.1016/0378-4274(87)90127-5. [DOI] [PubMed] [Google Scholar]
  51. Kjellstrand P., Kanje M., Månsson L., Bjerkemo M., Mortensen I., Lanke J., Holmquist B. Trichloroethylene: effects on body and organ weights in mice, rats and gerbils. Toxicology. 1981;21(2):105–115. doi: 10.1016/0300-483x(81)90121-9. [DOI] [PubMed] [Google Scholar]
  52. Kodell R. L., West R. W. Upper confidence limits on excess risk for quantitative responses. Risk Anal. 1993 Apr;13(2):177–182. doi: 10.1111/j.1539-6924.1993.tb01067.x. [DOI] [PubMed] [Google Scholar]
  53. Konietzko H., Elster I., Bencsath A., Drysch K., Weichardt H. EEG-Veränderungen unter definierter Trichloräthylen-Exposition. Int Arch Occup Environ Health. 1975 Sep 19;35(3-4):257–264. doi: 10.1007/BF01837100. [DOI] [PubMed] [Google Scholar]
  54. Kulig B. M. The effects of chronic trichloroethylene exposure on neurobehavioral functioning in the rat. Neurotoxicol Teratol. 1987 Mar-Apr;9(2):171–178. doi: 10.1016/0892-0362(87)90095-x. [DOI] [PubMed] [Google Scholar]
  55. Larson J. L., Bull R. J. Metabolism and lipoperoxidative activity of trichloroacetate and dichloroacetate in rats and mice. Toxicol Appl Pharmacol. 1992 Aug;115(2):268–277. doi: 10.1016/0041-008x(92)90332-m. [DOI] [PubMed] [Google Scholar]
  56. Larson J. L., Bull R. J. Species differences in the metabolism of trichloroethylene to the carcinogenic metabolites trichloroacetate and dichloroacetate. Toxicol Appl Pharmacol. 1992 Aug;115(2):278–285. doi: 10.1016/0041-008x(92)90333-n. [DOI] [PubMed] [Google Scholar]
  57. Luster M. I., Portier C., Pait D. G., Rosenthal G. J., Germolec D. R., Corsini E., Blaylock B. L., Pollock P., Kouchi Y., Craig W. Risk assessment in immunotoxicology. II. Relationships between immune and host resistance tests. Fundam Appl Toxicol. 1993 Jul;21(1):71–82. doi: 10.1006/faat.1993.1074. [DOI] [PubMed] [Google Scholar]
  58. Luster M. I., Portier C., Pait D. G., White K. L., Jr, Gennings C., Munson A. E., Rosenthal G. J. Risk assessment in immunotoxicology. I. Sensitivity and predictability of immune tests. Fundam Appl Toxicol. 1992 Feb;18(2):200–210. doi: 10.1016/0272-0590(92)90047-l. [DOI] [PubMed] [Google Scholar]
  59. Maltoni C., Lefemine G., Cotti G., Perino G. Long-term carcinogenicity bioassays on trichloroethylene administered by inhalation to Sprague-Dawley rats and Swiss and B6C3F1 mice. Ann N Y Acad Sci. 1988;534:316–342. doi: 10.1111/j.1749-6632.1988.tb30120.x. [DOI] [PubMed] [Google Scholar]
  60. Manson J. M., Murphy M., Richdale N., Smith M. K. Effects of oral exposure to trichloroethylene on female reproductive function. Toxicology. 1984 Sep 14;32(3):229–242. doi: 10.1016/0300-483x(84)90076-3. [DOI] [PubMed] [Google Scholar]
  61. Melnick R. L., Jameson C. W., Goehl T. J., Maronpot R. R., Collins B. J., Greenwell A., Harrington F. W., Wilson R. E., Tomaszewski K. E., Agarwal D. K. Application of microencapsulation for toxicology studies. II. Toxicity of microencapsulated trichloroethylene in Fischer 344 rats. Fundam Appl Toxicol. 1987 May;8(4):432–442. doi: 10.1016/0272-0590(87)90129-1. [DOI] [PubMed] [Google Scholar]
  62. Merrick B. A., Robinson M., Condie L. W. Differing hepatotoxicity and lethality after subacute trichloroethylene exposure in aqueous or corn oil gavage vehicles in B6C3F1 mice. J Appl Toxicol. 1989 Feb;9(1):15–21. doi: 10.1002/jat.2550090105. [DOI] [PubMed] [Google Scholar]
  63. Moser V. C., Cheek B. M., MacPhail R. C. A multidisciplinary approach to toxicological screening: III. Neurobehavioral toxicity. J Toxicol Environ Health. 1995 Jun;45(2):173–210. doi: 10.1080/15287399509531988. [DOI] [PubMed] [Google Scholar]
  64. Nakajima T., Okino T., Okuyama S., Kaneko T., Yonekura I., Sato A. Ethanol-induced enhancement of trichloroethylene metabolism and hepatotoxicity: difference from the effect of phenobarbital. Toxicol Appl Pharmacol. 1988 Jun 30;94(2):227–237. doi: 10.1016/0041-008x(88)90264-5. [DOI] [PubMed] [Google Scholar]
  65. Narotsky M. G., Kavlock R. J. A multidisciplinary approach to toxicological screening: II. Developmental toxicity. J Toxicol Environ Health. 1995 Jun;45(2):145–171. doi: 10.1080/15287399509531987. [DOI] [PubMed] [Google Scholar]
  66. Narotsky M. G., Weller E. A., Chinchilli V. M., Kavlock R. J. Nonadditive developmental toxicity in mixtures of trichloroethylene, Di(2-ethylhexyl) phthalate, and heptachlor in a 5 x 5 x 5 design. Fundam Appl Toxicol. 1995 Sep;27(2):203–216. doi: 10.1006/faat.1995.1125. [DOI] [PubMed] [Google Scholar]
  67. Nomiyama K., Nomiyama H. Dose-response relationship for trichloroethylene in man. Int Arch Occup Environ Health. 1977 Sep 15;39(4):237–248. doi: 10.1007/BF00409369. [DOI] [PubMed] [Google Scholar]
  68. Odum J., Foster J. R., Green T. A mechanism for the development of Clara cell lesions in the mouse lung after exposure to trichloroethylene. Chem Biol Interact. 1992 Aug 14;83(2):135–153. doi: 10.1016/0009-2797(92)90042-j. [DOI] [PubMed] [Google Scholar]
  69. Okino T., Nakajima T., Nakano M. Morphological and biochemical analyses of trichloroethylene hepatotoxicity: differences in ethanol- and phenobarbital-pretreated rats. Toxicol Appl Pharmacol. 1991 May;108(3):379–389. doi: 10.1016/0041-008x(91)90084-r. [DOI] [PubMed] [Google Scholar]
  70. Prendergast J. A., Jones R. A., Jenkins L. J., Jr, Siegel J. Effects on experimental animals of long-term inhalation of trichloroethylene, carbon tetrachloride, 1,1,1-trichloroethane, dichlorodifluoromethane, and 1,1-dichloroethylene. Toxicol Appl Pharmacol. 1967 Mar;10(2):270–289. doi: 10.1016/0041-008x(67)90110-x. [DOI] [PubMed] [Google Scholar]
  71. Renwick A. G. Data-derived safety factors for the evaluation of food additives and environmental contaminants. Food Addit Contam. 1993 May-Jun;10(3):275–305. doi: 10.1080/02652039309374152. [DOI] [PubMed] [Google Scholar]
  72. Salvini M., Binaschi S., Riva M. Evaluation of the psychophysiological functions in humans exposed to trichloroethylene. Br J Ind Med. 1971 Jul;28(3):293–295. doi: 10.1136/oem.28.3.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Sanchez I. M., Bull R. J. Early induction of reparative hyperplasia in the liver of B6C3F1 mice treated with dichloroacetate and trichloroacetate. Toxicology. 1990 Oct;64(1):33–46. doi: 10.1016/0300-483x(90)90097-z. [DOI] [PubMed] [Google Scholar]
  74. Sanders V. M., Tucker A. N., White K. L., Jr, Kauffmann B. M., Hallett P., Carchman R. A., Borzelleca J. F., Munson A. E. Humoral and cell-mediated immune status in mice exposed to trichloroethylene in the drinking water. Toxicol Appl Pharmacol. 1982 Mar 15;62(3):358–368. doi: 10.1016/0041-008x(82)90138-7. [DOI] [PubMed] [Google Scholar]
  75. Savolainen H., Pfäffli P., Tengén M., Vainio H. Trichloroethylene and 1,1,1-trichloroethane: effects on brain and liver after five days intermittent inhalation. Arch Toxicol. 1977 Sep 28;38(3):229–237. doi: 10.1007/BF00293657. [DOI] [PubMed] [Google Scholar]
  76. Schwetz B. A., Leong K. J., Gehring P. J. The effect of maternally inhaled trichloroethylene, perchloroethylene, methyl chloroform, and methylene chloride on embryonal and fetal development in mice and rats. Toxicol Appl Pharmacol. 1975 Apr;32(1):84–96. doi: 10.1016/0041-008x(75)90197-0. [DOI] [PubMed] [Google Scholar]
  77. Silverman A. P., Williams H. Behaviour of rats exposed to trichloroethylene vapour. Br J Ind Med. 1975 Nov;32(4):308–315. doi: 10.1136/oem.32.4.308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Smith M. K., Randall J. L., Read E. J., Stober J. A. Developmental toxicity of dichloroacetate in the rat. Teratology. 1992 Sep;46(3):217–223. doi: 10.1002/tera.1420460305. [DOI] [PubMed] [Google Scholar]
  79. Smith M. K., Randall J. L., Read E. J., Stober J. A. Teratogenic activity of trichloroacetic acid in the rat. Teratology. 1989 Nov;40(5):445–451. doi: 10.1002/tera.1420400506. [DOI] [PubMed] [Google Scholar]
  80. Spirtas R., Stewart P. A., Lee J. S., Marano D. E., Forbes C. D., Grauman D. J., Pettigrew H. M., Blair A., Hoover R. N., Cohen J. L. Retrospective cohort mortality study of workers at an aircraft maintenance facility. I. Epidemiological results. Br J Ind Med. 1991 Aug;48(8):515–530. doi: 10.1136/oem.48.8.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Stewart R. D., Dodd H. C., Gay H. H., Erley D. S. Experimental human exposure to trichloroethylene. Arch Environ Health. 1970 Jan;20(1):64–71. doi: 10.1080/00039896.1970.10665543. [DOI] [PubMed] [Google Scholar]
  82. Stott W. T., Quast J. F., Watanabe P. G. The pharmacokinetics and macromolecular interactions of trichloroethylene in mice and rats. Toxicol Appl Pharmacol. 1982 Jan;62(1):137–151. doi: 10.1016/0041-008x(82)90110-7. [DOI] [PubMed] [Google Scholar]
  83. Styles J. A., Wyatt I., Coutts C. Trichloroacetic acid: studies on uptake and effects on hepatic DNA and liver growth in mouse. Carcinogenesis. 1991 Sep;12(9):1715–1719. doi: 10.1093/carcin/12.9.1715. [DOI] [PubMed] [Google Scholar]
  84. Taylor D. H., Lagory K. E., Zaccaro D. J., Pfohl R. J., Laurie R. D. Effect of trichloroethylene on the exploratory and locomotor activity of rats exposed during development. Sci Total Environ. 1985 Dec;47:415–420. doi: 10.1016/0048-9697(85)90345-6. [DOI] [PubMed] [Google Scholar]
  85. Tola S., Vilhunen R., Järvinen E., Korkala M. L. A cohort study on workers exposed to trichloroethylene. J Occup Med. 1980 Nov;22(11):737–740. [PubMed] [Google Scholar]
  86. Tucker A. N., Sanders V. M., Barnes D. W., Bradshaw T. J., White K. L., Jr, Sain L. E., Borzelleca J. F., Munson A. E. Toxicology of trichloroethylene in the mouse. Toxicol Appl Pharmacol. 1982 Mar 15;62(3):351–357. doi: 10.1016/0041-008x(82)90137-5. [DOI] [PubMed] [Google Scholar]
  87. Westergren I., Kjellstrand P., Linder L. E., Johansson B. B. Reduction of brain specific gravity in mice prenatally exposed to trichloroethylene. Toxicol Lett. 1984 Nov;23(2):223–226. doi: 10.1016/0378-4274(84)90130-9. [DOI] [PubMed] [Google Scholar]
  88. Windemuller F. J., Ettema J. H. Effects of combined exposure to trichloroethylene and alcohol on mental capacity. Int Arch Occup Environ Health. 1978 Mar 15;41(2):77–85. doi: 10.1007/BF00381792. [DOI] [PubMed] [Google Scholar]
  89. Windham G. C., Shusterman D., Swan S. H., Fenster L., Eskenazi B. Exposure to organic solvents and adverse pregnancy outcome. Am J Ind Med. 1991;20(2):241–259. doi: 10.1002/ajim.4700200210. [DOI] [PubMed] [Google Scholar]
  90. Zenick H., Blackburn K., Hope E., Richdale N., Smith M. K. Effects of trichloroethylene exposure on male reproductive function in rats. Toxicology. 1984 Jun;31(3-4):237–250. doi: 10.1016/0300-483x(84)90105-7. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES