Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2000 Jun;108(Suppl 3):511–533. doi: 10.1289/ehp.00108s3511

Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models.

D Rice 1, S Barone Jr 1
PMCID: PMC1637807  PMID: 10852851

Abstract

Vulnerable periods during the development of the nervous system are sensitive to environmental insults because they are dependent on the temporal and regional emergence of critical developmental processes (i.e., proliferation, migration, differentiation, synaptogenesis, myelination, and apoptosis). Evidence from numerous sources demonstrates that neural development extends from the embryonic period through adolescence. In general, the sequence of events is comparable among species, although the time scales are considerably different. Developmental exposure of animals or humans to numerous agents (e.g., X-ray irradiation, methylazoxymethanol, ethanol, lead, methyl mercury, or chlorpyrifos) demonstrates that interference with one or more of these developmental processes can lead to developmental neurotoxicity. Different behavioral domains (e.g., sensory, motor, and various cognitive functions) are subserved by different brain areas. Although there are important differences between the rodent and human brain, analogous structures can be identified. Moreover, the ontogeny of specific behaviors can be used to draw inferences regarding the maturation of specific brain structures or neural circuits in rodents and primates, including humans. Furthermore, various clinical disorders in humans (e.g., schizophrenia, dyslexia, epilepsy, and autism) may also be the result of interference with normal ontogeny of developmental processes in the nervous system. Of critical concern is the possibility that developmental exposure to neurotoxicants may result in an acceleration of age-related decline in function. This concern is compounded by the fact that developmental neurotoxicity that results in small effects can have a profound societal impact when amortized across the entire population and across the life span of humans.

Full text

PDF
511

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aghajanian G. K., Bloom F. E. The formation of synaptic junctions in developing rat brain: a quantitative electron microscopic study. Brain Res. 1967 Dec;6(4):716–727. doi: 10.1016/0006-8993(67)90128-x. [DOI] [PubMed] [Google Scholar]
  2. Alberch J., Brito B., Notario V., Castro R. Prenatal haloperidol treatment decreases nerve growth factor receptor and mRNA in neonate rat forebrain. Neurosci Lett. 1991 Oct 14;131(2):228–232. doi: 10.1016/0304-3940(91)90620-9. [DOI] [PubMed] [Google Scholar]
  3. Alberch J., Carman-Krzan M., Fabrazzo M., Wise B. C. Chronic treatment with scopolamine and physostigmine changes nerve growth factor (NGF) receptor density and NGF content in rat brain. Brain Res. 1991 Mar 1;542(2):233–240. doi: 10.1016/0006-8993(91)91572-i. [DOI] [PubMed] [Google Scholar]
  4. Alfano D. P., Petit T. L. Neonatal lead exposure alters the dendritic development of hippocampal dentate granule cells. Exp Neurol. 1982 Feb;75(2):275–288. doi: 10.1016/0014-4886(82)90160-1. [DOI] [PubMed] [Google Scholar]
  5. Altman J., Sudarshan K. Postnatal development of locomotion in the laboratory rat. Anim Behav. 1975 Nov;23(4):896–920. doi: 10.1016/0003-3472(75)90114-1. [DOI] [PubMed] [Google Scholar]
  6. Alvarez P., Zola-Morgan S., Squire L. R. Damage limited to the hippocampal region produces long-lasting memory impairment in monkeys. J Neurosci. 1995 May;15(5 Pt 2):3796–3807. doi: 10.1523/JNEUROSCI.15-05-03796.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Alvarez P., Zola-Morgan S., Squire L. R. The animal model of human amnesia: long-term memory impaired and short-term memory intact. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5637–5641. doi: 10.1073/pnas.91.12.5637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Angelucci F., Cimino M., Balduini W., Piltillo L., Aloe L. Prenatal exposure to ethanol causes differential effects in nerve growth factor and its receptor in the basal forebrain of preweaning and adult rats. J Neural Transplant Plast. 1997 Mar-Jun;6(2):63–71. doi: 10.1155/NP.1997.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Angelucci F., Fiore M., Cozzari C., Aloe L. Prenatal ethanol effects on NGF level, NPY and ChAT immunoreactivity in mouse entorhinal cortex: a preliminary study. Neurotoxicol Teratol. 1999 Jul-Aug;21(4):415–425. doi: 10.1016/s0892-0362(99)00005-7. [DOI] [PubMed] [Google Scholar]
  10. Angevine J. B., Jr, Sidman R. L. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature. 1961 Nov 25;192:766–768. doi: 10.1038/192766b0. [DOI] [PubMed] [Google Scholar]
  11. Annegers J. F., Rocca W. A., Hauser W. A. Causes of epilepsy: contributions of the Rochester epidemiology project. Mayo Clin Proc. 1996 Jun;71(6):570–575. doi: 10.4065/71.6.570. [DOI] [PubMed] [Google Scholar]
  12. Atterberry T. T., Burnett W. T., Chambers J. E. Age-related differences in parathion and chlorpyrifos toxicity in male rats: target and nontarget esterase sensitivity and cytochrome P450-mediated metabolism. Toxicol Appl Pharmacol. 1997 Dec;147(2):411–418. doi: 10.1006/taap.1997.8303. [DOI] [PubMed] [Google Scholar]
  13. Audesirk T., Cabell L. Nanomolar concentrations of nicotine and cotinine alter the development of cultured hippocampal neurons via non-acetylcholine receptor-mediated mechanisms. Neurotoxicology. 1999 Aug;20(4):639–646. [PubMed] [Google Scholar]
  14. Bachevalier J., Beauregard M. Maturation of medial temporal lobe memory functions in rodents, monkeys, and humans. Hippocampus. 1993;3(Spec No):191–201. [PubMed] [Google Scholar]
  15. Bachevalier J., Brickson M., Hagger C. Limbic-dependent recognition memory in monkeys develops early in infancy. Neuroreport. 1993 Jan;4(1):77–80. doi: 10.1097/00001756-199301000-00020. [DOI] [PubMed] [Google Scholar]
  16. Bachevalier J., Hagger C., Bercu B. b. Gender differences in visual habit formation in 3-month-old rhesus monkeys. Dev Psychobiol. 1989 Sep;22(6):585–599. doi: 10.1002/dev.420220605. [DOI] [PubMed] [Google Scholar]
  17. Bachevalier J., Mishkin M. An early and a late developing system for learning and retention in infant monkeys. Behav Neurosci. 1984 Oct;98(5):770–778. doi: 10.1037//0735-7044.98.5.770. [DOI] [PubMed] [Google Scholar]
  18. Bachevalier J. Ontogenetic development of habit and memory formation in primates. Ann N Y Acad Sci. 1990;608:457–484. doi: 10.1111/j.1749-6632.1990.tb48906.x. [DOI] [PubMed] [Google Scholar]
  19. Baer J. S., Barr H. M., Bookstein F. L., Sampson P. D., Streissguth A. P. Prenatal alcohol exposure and family history of alcoholism in the etiology of adolescent alcohol problems. J Stud Alcohol. 1998 Sep;59(5):533–543. doi: 10.15288/jsa.1998.59.533. [DOI] [PubMed] [Google Scholar]
  20. Bailey C. H., Chen M. Morphological aspects of synaptic plasticity in Aplysia. An anatomical substrate for long-term memory. Ann N Y Acad Sci. 1991;627:181–196. doi: 10.1111/j.1749-6632.1991.tb25924.x. [DOI] [PubMed] [Google Scholar]
  21. Barinaga M. Is apoptosis key in Alzheimer's disease? Science. 1998 Aug 28;281(5381):1303–1304. doi: 10.1126/science.281.5381.1303. [DOI] [PubMed] [Google Scholar]
  22. Barker J. L., Behar T., Li Y. X., Liu Q. Y., Ma W., Maric D., Maric I., Schaffner A. E., Serafini R., Smith S. V. GABAergic cells and signals in CNS development. Perspect Dev Neurobiol. 1998;5(2-3):305–322. [PubMed] [Google Scholar]
  23. Barkovich A. J., Truwit C. L. Brain damage from perinatal asphyxia: correlation of MR findings with gestational age. AJNR Am J Neuroradiol. 1990 Nov-Dec;11(6):1087–1096. [PMC free article] [PubMed] [Google Scholar]
  24. Barone S., Jr, Das K. P., Lassiter T. L., White L. D. Vulnerable processes of nervous system development: a review of markers and methods. Neurotoxicology. 2000 Feb-Apr;21(1-2):15–36. [PubMed] [Google Scholar]
  25. Barone S., Jr, Haykal-Coates N., Parran D. K., Tilson H. A. Gestational exposure to methylmercury alters the developmental pattern of trk-like immunoreactivity in the rat brain and results in cortical dysmorphology. Brain Res Dev Brain Res. 1998 Jul 1;109(1):13–31. doi: 10.1016/s0165-3806(98)00038-8. [DOI] [PubMed] [Google Scholar]
  26. Barone S., Jr, Stanton M. E., Mundy W. R. Neurotoxic effects of neonatal triethyltin (TET) exposure are exacerbated with aging. Neurobiol Aging. 1995 Sep-Oct;16(5):723–735. doi: 10.1016/0197-4580(95)00089-w. [DOI] [PubMed] [Google Scholar]
  27. Bayer S. A., Altman J., Russo R. J., Zhang X. Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology. 1993 Spring;14(1):83–144. [PubMed] [Google Scholar]
  28. Bayer S. A. Development of the hippocampal region in the rat. II. Morphogenesis during embryonic and early postnatal life. J Comp Neurol. 1980 Mar 1;190(1):115–134. doi: 10.1002/cne.901900108. [DOI] [PubMed] [Google Scholar]
  29. Beauregard M., Bachevalier J. Neonatal insult to the hippocampal region and schizophrenia: a review and a putative animal model. Can J Psychiatry. 1996 Sep;41(7):446–456. doi: 10.1177/070674379604100710. [DOI] [PubMed] [Google Scholar]
  30. Beauregard M., Malkova L., Bachevalier J. Stereotypies and loss of social affiliation after early hippocampectomy in primates. Neuroreport. 1995 Dec 15;6(18):2521–2526. doi: 10.1097/00001756-199512150-00018. [DOI] [PubMed] [Google Scholar]
  31. Beckmann H., Lauer M. The human striatum in schizophrenia. II. Increased number of striatal neurons in schizophrenics. Psychiatry Res. 1997 Feb 7;68(2-3):99–109. doi: 10.1016/s0925-4927(96)02947-2. [DOI] [PubMed] [Google Scholar]
  32. Bellinger D., Leviton A., Allred E., Rabinowitz M. Pre- and postnatal lead exposure and behavior problems in school-aged children. Environ Res. 1994 Jul;66(1):12–30. doi: 10.1006/enrs.1994.1041. [DOI] [PubMed] [Google Scholar]
  33. Ben-Ari Y., Khazipov R., Leinekugel X., Caillard O., Gaiarsa J. L. GABAA, NMDA and AMPA receptors: a developmentally regulated 'ménage à trois'. Trends Neurosci. 1997 Nov;20(11):523–529. doi: 10.1016/s0166-2236(97)01147-8. [DOI] [PubMed] [Google Scholar]
  34. Bertolino A., Knable M. B., Saunders R. C., Callicott J. H., Kolachana B., Mattay V. S., Bachevalier J., Frank J. A., Egan M., Weinberger D. R. The relationship between dorsolateral prefrontal N-acetylaspartate measures and striatal dopamine activity in schizophrenia. Biol Psychiatry. 1999 Mar 15;45(6):660–667. doi: 10.1016/s0006-3223(98)00380-1. [DOI] [PubMed] [Google Scholar]
  35. Bessho Y., Nakanishi S., Nawa H. Glutamate receptor agonists enhance the expression of BDNF mRNA in cultured cerebellar granule cells. Brain Res Mol Brain Res. 1993 May;18(3):201–208. doi: 10.1016/0169-328x(93)90190-z. [DOI] [PubMed] [Google Scholar]
  36. Blaschke A. J., Staley K., Chun J. Widespread programmed cell death in proliferative and postmitotic regions of the fetal cerebral cortex. Development. 1996 Apr;122(4):1165–1174. doi: 10.1242/dev.122.4.1165. [DOI] [PubMed] [Google Scholar]
  37. Blaschke A. J., Weiner J. A., Chun J. Programmed cell death is a universal feature of embryonic and postnatal neuroproliferative regions throughout the central nervous system. J Comp Neurol. 1998 Jun 22;396(1):39–50. doi: 10.1002/(sici)1096-9861(19980622)396:1<39::aid-cne4>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  38. Boehm G. W., Sherman G. F., Hoplight B. J., 2nd, Hyde L. A., Waters N. S., Bradway D. M., Galaburda A. M., Denenberg V. H. Learning and memory in the autoimmune BXSB mouse: effects of neocortical ectopias and environmental enrichment. Brain Res. 1996 Jul 8;726(1-2):11–22. [PubMed] [Google Scholar]
  39. Bourgeois J. P., Goldman-Rakic P. S., Rakic P. Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cereb Cortex. 1994 Jan-Feb;4(1):78–96. doi: 10.1093/cercor/4.1.78. [DOI] [PubMed] [Google Scholar]
  40. Bourgeois J. P., Rakic P. Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. J Neurosci. 1993 Jul;13(7):2801–2820. doi: 10.1523/JNEUROSCI.13-07-02801.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Boyes W. K. Rat and human sensory evoked potentials and the predictability of human neurotoxicity from rat data. Neurotoxicology. 1994 Fall;15(3):569–578. [PubMed] [Google Scholar]
  42. Bredesen D. E. Neural apoptosis. Ann Neurol. 1995 Dec;38(6):839–851. doi: 10.1002/ana.410380604. [DOI] [PubMed] [Google Scholar]
  43. Breese C. R., D'Costa A., Ingram R. L., Lenham J., Sonntag W. E. Long-term suppression of insulin-like growth factor-1 in rats after in utero ethanol exposure: relationship to somatic growth. J Pharmacol Exp Ther. 1993 Jan;264(1):448–456. [PubMed] [Google Scholar]
  44. Brennan P. A., Grekin E. R., Mednick S. A. Maternal smoking during pregnancy and adult male criminal outcomes. Arch Gen Psychiatry. 1999 Mar;56(3):215–219. doi: 10.1001/archpsyc.56.3.215. [DOI] [PubMed] [Google Scholar]
  45. Bryson S. E., Clark B. S., Smith I. M. First report of a Canadian epidemiological study of autistic syndromes. J Child Psychol Psychiatry. 1988 Jul;29(4):433–445. doi: 10.1111/j.1469-7610.1988.tb00735.x. [DOI] [PubMed] [Google Scholar]
  46. Burke R. E., Kholodilov N. G. Programmed cell death: does it play a role in Parkinson's disease? Ann Neurol. 1998 Sep;44(3 Suppl 1):S126–S133. doi: 10.1002/ana.410440719. [DOI] [PubMed] [Google Scholar]
  47. Bursch W., Kleine L., Tenniswood M. The biochemistry of cell death by apoptosis. Biochem Cell Biol. 1990 Sep;68(9):1071–1074. doi: 10.1139/o90-160. [DOI] [PubMed] [Google Scholar]
  48. Busciglio J., Yankner B. A. Apoptosis and increased generation of reactive oxygen species in Down's syndrome neurons in vitro. Nature. 1995 Dec 21;378(6559):776–779. doi: 10.1038/378776a0. [DOI] [PubMed] [Google Scholar]
  49. Butterworth N. J., Williams L., Bullock J. Y., Love D. R., Faull R. L., Dragunow M. Trinucleotide (CAG) repeat length is positively correlated with the degree of DNA fragmentation in Huntington's disease striatum. Neuroscience. 1998 Nov;87(1):49–53. doi: 10.1016/s0306-4522(98)00129-8. [DOI] [PubMed] [Google Scholar]
  50. Buznikov G. A., Shmukler YuB, Lauder J. M. Changes in the physiological roles of neurotransmitters during individual development. Neurosci Behav Physiol. 1999 Jan-Feb;29(1):11–21. doi: 10.1007/BF02461353. [DOI] [PubMed] [Google Scholar]
  51. Bâ A., Seri B. V. Psychomotor functions in developing rats: ontogenetic approach to structure-function relationships. Neurosci Biobehav Rev. 1995 Fall;19(3):413–425. doi: 10.1016/0149-7634(94)00042-y. [DOI] [PubMed] [Google Scholar]
  52. Cameron H. A., Hazel T. G., McKay R. D. Regulation of neurogenesis by growth factors and neurotransmitters. J Neurobiol. 1998 Aug;36(2):287–306. [PubMed] [Google Scholar]
  53. Campbell C. G., Seidler F. J., Slotkin T. A. Chlorpyrifos interferes with cell development in rat brain regions. Brain Res Bull. 1997;43(2):179–189. doi: 10.1016/s0361-9230(96)00436-4. [DOI] [PubMed] [Google Scholar]
  54. Carpenter E. M., Goddard J. M., Chisaka O., Manley N. R., Capecchi M. R. Loss of Hox-A1 (Hox-1.6) function results in the reorganization of the murine hindbrain. Development. 1993 Aug;118(4):1063–1075. doi: 10.1242/dev.118.4.1063. [DOI] [PubMed] [Google Scholar]
  55. Castrén E., da Penha Berzaghi M., Lindholm D., Thoenen H. Differential effects of MK-801 on brain-derived neurotrophic factor mRNA levels in different regions of the rat brain. Exp Neurol. 1993 Aug;122(2):244–252. doi: 10.1006/exnr.1993.1124. [DOI] [PubMed] [Google Scholar]
  56. Chausovsky A., Tsarfaty I., Kam Z., Yarden Y., Geiger B., Bershadsky A. D. Morphogenetic effects of neuregulin (neu differentiation factor) in cultured epithelial cells. Mol Biol Cell. 1998 Nov;9(11):3195–3209. doi: 10.1091/mbc.9.11.3195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Choi B. H., Lapham L. W., Amin-Zaki L., Saleem T. Abnormal neuronal migration, deranged cerebral cortical organization, and diffuse white matter astrocytosis of human fetal brain: a major effect of methylmercury poisoning in utero. J Neuropathol Exp Neurol. 1978 Nov-Dec;37(6):719–733. doi: 10.1097/00005072-197811000-00001. [DOI] [PubMed] [Google Scholar]
  58. Choi B. H. Methylmercury poisoning of the developing nervous system: I. Pattern of neuronal migration in the cerebral cortex. Neurotoxicology. 1986 Summer;7(2):591–600. [PubMed] [Google Scholar]
  59. Choi B. H. The effects of methylmercury on the developing brain. Prog Neurobiol. 1989;32(6):447–470. doi: 10.1016/0301-0082(89)90018-x. [DOI] [PubMed] [Google Scholar]
  60. Christensen B., Arbour L., Tran P., Leclerc D., Sabbaghian N., Platt R., Gilfix B. M., Rosenblatt D. S., Gravel R. A., Forbes P. Genetic polymorphisms in methylenetetrahydrofolate reductase and methionine synthase, folate levels in red blood cells, and risk of neural tube defects. Am J Med Genet. 1999 May 21;84(2):151–157. doi: 10.1002/(sici)1096-8628(19990521)84:2<151::aid-ajmg12>3.0.co;2-t. [DOI] [PubMed] [Google Scholar]
  61. Clark A. S., Goldman-Rakic P. S. Gonadal hormones influence the emergence of cortical function in nonhuman primates. Behav Neurosci. 1989 Dec;103(6):1287–1295. doi: 10.1037//0735-7044.103.6.1287. [DOI] [PubMed] [Google Scholar]
  62. Cory-Slechta D. A., Pokora M. J., Widzowski D. V. Behavioral manifestations of prolonged lead exposure initiated at different stages of the life cycle: II. Delayed spatial alternation. Neurotoxicology. 1991 Winter;12(4):761–776. [PubMed] [Google Scholar]
  63. Cory-Slechta D. A., Weiss B., Cox C. Delayed behavioral toxicity of lead with increasing exposure concentration. Toxicol Appl Pharmacol. 1983 Dec;71(3):342–352. doi: 10.1016/0041-008x(83)90021-2. [DOI] [PubMed] [Google Scholar]
  64. Cuadros M. A., Navascués J. The origin and differentiation of microglial cells during development. Prog Neurobiol. 1998 Oct;56(2):173–189. doi: 10.1016/s0301-0082(98)00035-5. [DOI] [PubMed] [Google Scholar]
  65. Cutler A. R., Wilkerson A. E., Gingras J. L., Levin E. D. Prenatal cocaine and/or nicotine exposure in rats: preliminary findings on long-term cognitive outcome and genital development at birth. Neurotoxicol Teratol. 1996 Nov-Dec;18(6):635–643. doi: 10.1016/s0892-0362(96)00125-0. [DOI] [PubMed] [Google Scholar]
  66. Dahl R., White R. F., Weihe P., Sørensen N., Letz R., Hudnell H. K., Otto D. A., Grandjean P. Feasibility and validity of three computer-assisted neurobehavioral tests in 7-year-old children. Neurotoxicol Teratol. 1996 Jul-Aug;18(4):413–419. doi: 10.1016/0892-0362(96)00031-1. [DOI] [PubMed] [Google Scholar]
  67. De Simone R., Aloe L. Influence of ethanol consumption on brain nerve growth factor and its target cells in developing and adult rodents. Ann Ist Super Sanita. 1993;29(1):179–183. [PubMed] [Google Scholar]
  68. Denenberg V. H., Mobraaten L. E., Sherman G. F., Morrison L., Schrott L. M., Waters N. S., Rosen G. D., Behan P. O., Galaburda A. M. Effects of the autoimmune uterine/maternal environment upon cortical ectopias, behavior and autoimmunity. Brain Res. 1991 Nov 1;563(1-2):114–122. doi: 10.1016/0006-8993(91)91522-3. [DOI] [PubMed] [Google Scholar]
  69. Denenberg V. H., Sherman G. F., Schrott L. M., Rosen G. D., Galaburda A. M. Spatial learning, discrimination learning, paw preference and neocortical ectopias in two autoimmune strains of mice. Brain Res. 1991 Oct 18;562(1):98–104. doi: 10.1016/0006-8993(91)91192-4. [DOI] [PubMed] [Google Scholar]
  70. Diamond A. Evidence for the importance of dopamine for prefrontal cortex functions early in life. Philos Trans R Soc Lond B Biol Sci. 1996 Oct 29;351(1346):1483–1494. doi: 10.1098/rstb.1996.0134. [DOI] [PubMed] [Google Scholar]
  71. Diamond A., Goldman-Rakic P. S. Comparison of human infants and rhesus monkeys on Piaget's AB task: evidence for dependence on dorsolateral prefrontal cortex. Exp Brain Res. 1989;74(1):24–40. doi: 10.1007/BF00248277. [DOI] [PubMed] [Google Scholar]
  72. Diamond A. Rate of maturation of the hippocampus and the developmental progression of children's performance on the delayed non-matching to sample and visual paired comparison tasks. Ann N Y Acad Sci. 1990;608:394–433. doi: 10.1111/j.1749-6632.1990.tb48904.x. [DOI] [PubMed] [Google Scholar]
  73. Diamond M. C., Ingham C. A., Johnson R. E., Bennett E. L., Rosenzweig M. R. Effects of environment on morphology of rat cerebral cortex and hippocampus. J Neurobiol. 1976 Jan;7(1):75–85. doi: 10.1002/neu.480070108. [DOI] [PubMed] [Google Scholar]
  74. Diamond M. C., Lindner B., Johnson R., Bennett E. L., Rosenzweig M. R. Differences in occipital cortical synapses from environmentally enriched, impoverished, and standard colony rats. J Neurosci Res. 1975;1(2):109–119. doi: 10.1002/jnr.490010203. [DOI] [PubMed] [Google Scholar]
  75. Dohrman D. P., West J. R., Pantazis N. J. Ethanol reduces expression of the nerve growth factor receptor, but not nerve growth factor protein levels in the neonatal rat cerebellum. Alcohol Clin Exp Res. 1997 Aug;21(5):882–893. [PubMed] [Google Scholar]
  76. Dragunow M., MacGibbon G. A., Lawlor P., Butterworth N., Connor B., Henderson C., Walton M., Woodgate A., Hughes P., Faull R. L. Apoptosis, neurotrophic factors and neurodegeneration. Rev Neurosci. 1997 Jul-Dec;8(3-4):223–265. doi: 10.1515/revneuro.1997.8.3-4.223. [DOI] [PubMed] [Google Scholar]
  77. Eagleson K. L., Lillien L., Chan A. V., Levitt P. Mechanisms specifying area fate in cortex include cell-cycle-dependent decisions and the capacity of progenitors to express phenotype memory. Development. 1997 Apr;124(8):1623–1630. doi: 10.1242/dev.124.8.1623. [DOI] [PubMed] [Google Scholar]
  78. Eichenbaum H., Clegg R. A., Feeley A. Reexamination of functional subdivisions of the rodent prefrontal cortex. Exp Neurol. 1983 Feb;79(2):434–451. doi: 10.1016/0014-4886(83)90224-8. [DOI] [PubMed] [Google Scholar]
  79. Eide F. F., Lowenstein D. H., Reichardt L. F. Neurotrophins and their receptors--current concepts and implications for neurologic disease. Exp Neurol. 1993 Jun;121(2):200–214. doi: 10.1006/exnr.1993.1087. [DOI] [PubMed] [Google Scholar]
  80. Elbert T., Pantev C., Wienbruch C., Rockstroh B., Taub E. Increased cortical representation of the fingers of the left hand in string players. Science. 1995 Oct 13;270(5234):305–307. doi: 10.1126/science.270.5234.305. [DOI] [PubMed] [Google Scholar]
  81. Elferink L. A., Scheller R. H. Synaptic vesicle proteins and regulated exocytosis. Prog Brain Res. 1995;105:79–85. doi: 10.1016/s0079-6123(08)63285-9. [DOI] [PubMed] [Google Scholar]
  82. English P. B., Eskenazi B. Reinterpreting the effects of maternal smoking on infant birthweight and perinatal mortality: a multivariate approach to birthweight standardization. Int J Epidemiol. 1992 Dec;21(6):1097–1105. doi: 10.1093/ije/21.6.1097. [DOI] [PubMed] [Google Scholar]
  83. Eriksson P. Developmental neurotoxicity of environmental agents in the neonate. Neurotoxicology. 1997;18(3):719–726. [PubMed] [Google Scholar]
  84. Evans H. L., Daniel S. A., Marmor M. Reversal learning tasks may provide rapid determination of cognitive deficits in lead-exposed children. Neurotoxicol Teratol. 1994 Sep-Oct;16(5):471–477. doi: 10.1016/0892-0362(94)90125-2. [DOI] [PubMed] [Google Scholar]
  85. Fagan J. F., 3rd The paired-comparison paradigm and infant intelligence. Ann N Y Acad Sci. 1990;608:337–364. doi: 10.1111/j.1749-6632.1990.tb48902.x. [DOI] [PubMed] [Google Scholar]
  86. Famy C., Streissguth A. P., Unis A. S. Mental illness in adults with fetal alcohol syndrome or fetal alcohol effects. Am J Psychiatry. 1998 Apr;155(4):552–554. doi: 10.1176/ajp.155.4.552. [DOI] [PubMed] [Google Scholar]
  87. Fechter L. D. Distribution of manganese in development. Neurotoxicology. 1999 Apr-Jun;20(2-3):197–201. [PubMed] [Google Scholar]
  88. Fergusson D. M., Horwood L. J., Lynskey M. T. Maternal smoking before and after pregnancy: effects on behavioral outcomes in middle childhood. Pediatrics. 1993 Dec;92(6):815–822. [PubMed] [Google Scholar]
  89. Fergusson D. M. Prenatal smoking and antisocial behavior. Arch Gen Psychiatry. 1999 Mar;56(3):223–224. doi: 10.1001/archpsyc.56.3.223. [DOI] [PubMed] [Google Scholar]
  90. Fergusson D. M., Woodward L. J., Horwood L. J. Maternal smoking during pregnancy and psychiatric adjustment in late adolescence. Arch Gen Psychiatry. 1998 Aug;55(8):721–727. doi: 10.1001/archpsyc.55.8.721. [DOI] [PubMed] [Google Scholar]
  91. Florence S. L., Taub H. B., Kaas J. H. Large-scale sprouting of cortical connections after peripheral injury in adult macaque monkeys. Science. 1998 Nov 6;282(5391):1117–1121. doi: 10.1126/science.282.5391.1117. [DOI] [PubMed] [Google Scholar]
  92. Fox D. A., Campbell M. L., Blocker Y. S. Functional alterations and apoptotic cell death in the retina following developmental or adult lead exposure. Neurotoxicology. 1997;18(3):645–664. [PubMed] [Google Scholar]
  93. Frangou S., Murray R. M. Imaging as a tool in exploring the neurodevelopment and genetics of schizophrenia. Br Med Bull. 1996 Jul;52(3):587–596. doi: 10.1093/oxfordjournals.bmb.a011569. [DOI] [PubMed] [Google Scholar]
  94. Freeman J. H., Jr, Barone S., Jr, Stanton M. E. Disruption of cerebellar maturation by an antimitotic agent impairs the ontogeny of eyeblink conditioning in rats. J Neurosci. 1995 Nov;15(11):7301–7314. doi: 10.1523/JNEUROSCI.15-11-07301.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. French S. J., Humby T., Horner C. H., Sofroniew M. V., Rattray M. Hippocampal neurotrophin and trk receptor mRNA levels are altered by local administration of nicotine, carbachol and pilocarpine. Brain Res Mol Brain Res. 1999 Apr 6;67(1):124–136. doi: 10.1016/s0169-328x(99)00048-0. [DOI] [PubMed] [Google Scholar]
  96. Fried P. A., Watkinson B., Gray R. Differential effects on cognitive functioning in 9- to 12-year olds prenatally exposed to cigarettes and marihuana. Neurotoxicol Teratol. 1998 May-Jun;20(3):293–306. doi: 10.1016/s0892-0362(97)00091-3. [DOI] [PubMed] [Google Scholar]
  97. Frischer R. E., King J. A., Rose K. J., Strand F. L. Maturational changes in neonatal rat motor system with early postnatal administration of nicotine. Int J Dev Neurosci. 1988;6(2):149–154. doi: 10.1016/0736-5748(88)90039-1. [DOI] [PubMed] [Google Scholar]
  98. Furlong C. E., Li W. F., Costa L. G., Richter R. J., Shih D. M., Lusis A. J. Genetically determined susceptibility to organophosphorus insecticides and nerve agents: developing a mouse model for the human PON1 polymorphism. Neurotoxicology. 1998 Aug-Oct;19(4-5):645–650. [PubMed] [Google Scholar]
  99. Fuster J. M. Prefrontal cortex and the bridging of temporal gaps in the perception-action cycle. Ann N Y Acad Sci. 1990;608:318–336. doi: 10.1111/j.1749-6632.1990.tb48901.x. [DOI] [PubMed] [Google Scholar]
  100. Galaburda A. M., Kemper T. L. Cytoarchitectonic abnormalities in developmental dyslexia: a case study. Ann Neurol. 1979 Aug;6(2):94–100. doi: 10.1002/ana.410060203. [DOI] [PubMed] [Google Scholar]
  101. Galaburda A. M., Sherman G. F., Rosen G. D., Aboitiz F., Geschwind N. Developmental dyslexia: four consecutive patients with cortical anomalies. Ann Neurol. 1985 Aug;18(2):222–233. doi: 10.1002/ana.410180210. [DOI] [PubMed] [Google Scholar]
  102. Gavalas A., Studer M., Lumsden A., Rijli F. M., Krumlauf R., Chambon P. Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. Development. 1998 Mar;125(6):1123–1136. doi: 10.1242/dev.125.6.1123. [DOI] [PubMed] [Google Scholar]
  103. Geschwind N., Galaburda A. M. Cerebral lateralization. Biological mechanisms, associations, and pathology: I. A hypothesis and a program for research. Arch Neurol. 1985 May;42(5):428–459. doi: 10.1001/archneur.1985.04060050026008. [DOI] [PubMed] [Google Scholar]
  104. Geschwind N., Galaburda A. M. Cerebral lateralization. Biological mechanisms, associations, and pathology: I. A hypothesis and a program for research. Arch Neurol. 1985 May;42(5):428–459. doi: 10.1001/archneur.1985.04060050026008. [DOI] [PubMed] [Google Scholar]
  105. Giancola P. R., Zeichner A. Neuropsychological performance on tests of frontal-lobe functioning and aggressive behavior in men. J Abnorm Psychol. 1994 Nov;103(4):832–835. doi: 10.1037//0021-843x.103.4.832. [DOI] [PubMed] [Google Scholar]
  106. Gilbert S. G., Rice D. C., Burbacher T. M. Fixed interval/fixed ratio performance in adult monkeys exposed in utero to methylmercury. Neurotoxicol Teratol. 1996 Sep-Oct;18(5):539–546. doi: 10.1016/0892-0362(96)00081-5. [DOI] [PubMed] [Google Scholar]
  107. Gleason E. L., Spitzer N. C. AMPA and NMDA receptors expressed by differentiating Xenopus spinal neurons. J Neurophysiol. 1998 Jun;79(6):2986–2998. doi: 10.1152/jn.1998.79.6.2986. [DOI] [PubMed] [Google Scholar]
  108. Goldey E. S., Kehn L. S., Lau C., Rehnberg G. L., Crofton K. M. Developmental exposure to polychlorinated biphenyls (Aroclor 1254) reduces circulating thyroid hormone concentrations and causes hearing deficits in rats. Toxicol Appl Pharmacol. 1995 Nov;135(1):77–88. doi: 10.1006/taap.1995.1210. [DOI] [PubMed] [Google Scholar]
  109. Goldman-Rakic P. S. Development of cortical circuitry and cognitive function. Child Dev. 1987 Jun;58(3):601–622. [PubMed] [Google Scholar]
  110. Goldman-Rakic P. S., Selemon L. D. Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr Bull. 1997;23(3):437–458. doi: 10.1093/schbul/23.3.437. [DOI] [PubMed] [Google Scholar]
  111. Goodman R. The relationship between normal variation in IQ and common childhood psychopathology: a clinical study. Eur Child Adolesc Psychiatry. 1995 Jul;4(3):187–196. doi: 10.1007/BF01980457. [DOI] [PubMed] [Google Scholar]
  112. Greenough W. T., Volkmar F. R. Pattern of dendritic branching in occipital cortex of rats reared in complex environments. Exp Neurol. 1973 Aug;40(2):491–504. doi: 10.1016/0014-4886(73)90090-3. [DOI] [PubMed] [Google Scholar]
  113. Grifman M., Galyam N., Seidman S., Soreq H. Functional redundancy of acetylcholinesterase and neuroligin in mammalian neuritogenesis. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13935–13940. doi: 10.1073/pnas.95.23.13935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Guerri C. Neuroanatomical and neurophysiological mechanisms involved in central nervous system dysfunctions induced by prenatal alcohol exposure. Alcohol Clin Exp Res. 1998 Apr;22(2):304–312. doi: 10.1111/j.1530-0277.1998.tb03653.x. [DOI] [PubMed] [Google Scholar]
  115. Gunderson V. M., Grant-Webster K. S., Sackett G. P. Deficits in visual recognition in low birth weight infant pigtailed monkeys (Macaca nemestrina). Child Dev. 1989 Feb;60(1):119–127. [PubMed] [Google Scholar]
  116. Gunderson V. M., Grant K. S., Burbacher T. M., Fagan J. F., 3rd, Mottet N. K. The effect of low-level prenatal methylmercury exposure on visual recognition memory in infant crab-eating macaques. Child Dev. 1986 Aug;57(4):1076–1083. [PubMed] [Google Scholar]
  117. Harry G. J., Toews A. D., Krigman M. R., Morell P. The effect of lead toxicity and milk deprivation of myelination in the rat. Toxicol Appl Pharmacol. 1985 Mar 15;77(3):458–464. doi: 10.1016/0041-008x(85)90186-3. [DOI] [PubMed] [Google Scholar]
  118. Haykal-Coates N., Shafer T. J., Mundy W. R., Barone S., Jr Effects of gestational methylmercury exposure on immunoreactivity of specific isoforms of PKC and enzyme activity during post-natal development of the rat brain. Brain Res Dev Brain Res. 1998 Jul 1;109(1):33–49. doi: 10.1016/s0165-3806(98)00039-x. [DOI] [PubMed] [Google Scholar]
  119. Helmbacher F., Pujades C., Desmarquet C., Frain M., Rijli F. M., Chambon P., Charnay P. Hoxa1 and Krox-20 synergize to control the development of rhombomere 3. Development. 1998 Dec;125(23):4739–4748. doi: 10.1242/dev.125.23.4739. [DOI] [PubMed] [Google Scholar]
  120. Herschkowitz N., Kagan J., Zilles K. Neurobiological bases of behavioral development in the first year. Neuropediatrics. 1997 Dec;28(6):296–306. doi: 10.1055/s-2007-973720. [DOI] [PubMed] [Google Scholar]
  121. Hoff S. F. Synaptogenesis in the hippocampal dentate gyrus: effects of in utero ethanol exposure. Brain Res Bull. 1988 Jul;21(1):47–54. doi: 10.1016/0361-9230(88)90119-0. [DOI] [PubMed] [Google Scholar]
  122. Hoffman P. L., Tabakoff B. To be or not to be: how ethanol can affect neuronal death during development. Alcohol Clin Exp Res. 1996 Feb;20(1):193–195. doi: 10.1111/j.1530-0277.1996.tb01065.x. [DOI] [PubMed] [Google Scholar]
  123. Hong Y. S., Kim S. Y., Bhattacharya A., Pratt D. R., Hong W. K., Tainsky M. A. Structure and function of the HOX A1 human homeobox gene cDNA. Gene. 1995 Jul 4;159(2):209–214. doi: 10.1016/0378-1119(95)92712-g. [DOI] [PubMed] [Google Scholar]
  124. Hultman C. M., Ohman A., Cnattingius S., Wieselgren I. M., Lindström L. H. Prenatal and neonatal risk factors for schizophrenia. Br J Psychiatry. 1997 Feb;170:128–133. doi: 10.1192/bjp.170.2.128. [DOI] [PubMed] [Google Scholar]
  125. Hultman C. M., Sparén P., Takei N., Murray R. M., Cnattingius S. Prenatal and perinatal risk factors for schizophrenia, affective psychosis, and reactive psychosis of early onset: case-control study. BMJ. 1999 Feb 13;318(7181):421–426. doi: 10.1136/bmj.318.7181.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Hunter S. F., Leavitt J. A., Rodriguez M. Direct observation of myelination in vivo in the mature human central nervous system. A model for the behaviour of oligodendrocyte progenitors and their progeny. Brain. 1997 Nov;120(Pt 11):2071–2082. doi: 10.1093/brain/120.11.2071. [DOI] [PubMed] [Google Scholar]
  127. Ignacio M. P., Kimm E. J., Kageyama G. H., Yu J., Robertson R. T. Postnatal migration of neurons and formation of laminae in rat cerebral cortex. Anat Embryol (Berl) 1995 Feb;191(2):89–100. doi: 10.1007/BF00186782. [DOI] [PubMed] [Google Scholar]
  128. Iwasaki N., Hamano K., Okada Y., Horigome Y., Nakayama J., Takeya T., Takita H., Nose T. Volumetric quantification of brain development using MRI. Neuroradiology. 1997 Dec;39(12):841–846. doi: 10.1007/s002340050517. [DOI] [PubMed] [Google Scholar]
  129. Jernigan T. L., Trauner D. A., Hesselink J. R., Tallal P. A. Maturation of human cerebrum observed in vivo during adolescence. Brain. 1991 Oct;114(Pt 5):2037–2049. doi: 10.1093/brain/114.5.2037. [DOI] [PubMed] [Google Scholar]
  130. Johnson G. V., Watson A. L., Jr, Lartius R., Uemura E., Jope R. S. Dietary aluminum selectively decreases MAP-2 in brains of developing and adult rats. Neurotoxicology. 1992 Summer;13(2):463–474. [PubMed] [Google Scholar]
  131. Jones E. G., Valentino K. L., Fleshman J. W., Jr Adjustment of connectivity in rat neocortex after prenatal destruction of precursor cells of layers II-IV. Brain Res. 1981 Oct;254(3):425–431. doi: 10.1016/0165-3806(81)90050-x. [DOI] [PubMed] [Google Scholar]
  132. Jones E. G., Valentino K. L., Fleshman J. W., Jr Adjustment of connectivity in rat neocortex after prenatal destruction of precursor cells of layers II-IV. Brain Res. 1981 Oct;254(3):425–431. doi: 10.1016/0165-3806(81)90050-x. [DOI] [PubMed] [Google Scholar]
  133. Jones K. L., Smith D. W. Recognition of the fetal alcohol syndrome in early infancy. Lancet. 1973 Nov 3;302(7836):999–1001. doi: 10.1016/s0140-6736(73)91092-1. [DOI] [PubMed] [Google Scholar]
  134. Joseph R. Environmental influences on neural plasticity, the limbic system, emotional development and attachment: a review. Child Psychiatry Hum Dev. 1999 Spring;29(3):189–208. doi: 10.1023/a:1022660923605. [DOI] [PubMed] [Google Scholar]
  135. Kawamoto J. C., Overmann S. R., Woolley D. E., Vijayan V. K. Morphometric effects of preweaning lead exposure on the hippocampal formation of adult rats. Neurotoxicology. 1984 Fall;5(3):125–148. [PubMed] [Google Scholar]
  136. Kerns K. A., Don A., Mateer C. A., Streissguth A. P. Cognitive deficits in nonretarded adults with fetal alcohol syndrome. J Learn Disabil. 1997 Nov-Dec;30(6):685–693. doi: 10.1177/002221949703000612. [DOI] [PubMed] [Google Scholar]
  137. King A. J., Moore D. R. Plasticity of auditory maps in the brain. Trends Neurosci. 1991 Jan;14(1):31–37. doi: 10.1016/0166-2236(91)90181-s. [DOI] [PubMed] [Google Scholar]
  138. Kinjo Y., Higashi H., Nakano A., Sakamoto M., Sakai R. Profile of subjective complaints and activities of daily living among current patients with Minamata disease after 3 decades. Environ Res. 1993 Nov;63(2):241–251. doi: 10.1006/enrs.1993.1144. [DOI] [PubMed] [Google Scholar]
  139. Klein R. Role of neurotrophins in mouse neuronal development. FASEB J. 1994 Jul;8(10):738–744. doi: 10.1096/fasebj.8.10.8050673. [DOI] [PubMed] [Google Scholar]
  140. Koop M., Rilling G., Herrmann A., Kretschmann H. J. Volumetric development of the fetal telencephalon, cerebral cortex, diencephalon, and rhombencephalon including the cerebellum in man. Bibl Anat. 1986;(28):53–78. [PubMed] [Google Scholar]
  141. Koopman-Esseboom C., Weisglas-Kuperus N., de Ridder M. A., Van der Paauw C. G., Tuinstra L. G., Sauer P. J. Effects of polychlorinated biphenyl/dioxin exposure and feeding type on infants' mental and psychomotor development. Pediatrics. 1996 May;97(5):700–706. [PubMed] [Google Scholar]
  142. Kramer M. S. Intrauterine growth and gestational duration determinants. Pediatrics. 1987 Oct;80(4):502–511. [PubMed] [Google Scholar]
  143. Krägeloh-Mann I., Hagberg B., Petersen D., Riethmüller J., Gut E., Michaelis R. Bilateral spastic cerebral palsy--pathogenetic aspects from MRI. Neuropediatrics. 1992 Feb;23(1):46–48. doi: 10.1055/s-2008-1071311. [DOI] [PubMed] [Google Scholar]
  144. LaMantia A. S., Rakic P. Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. J Neurosci. 1990 Jul;10(7):2156–2175. doi: 10.1523/JNEUROSCI.10-07-02156.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Laev H., Karpiak S. E., Gokhale V. S., Hungund B. L. In utero ethanol exposure retards growth and alters morphology of cortical cultures: GM1 reverses effects. Alcohol Clin Exp Res. 1995 Oct;19(5):1226–1233. doi: 10.1111/j.1530-0277.1995.tb01605.x. [DOI] [PubMed] [Google Scholar]
  146. Lambert N. M. Adolescent outcomes for hyperactive children. Perspectives on general and specific patterns of childhood risk for adolescent educational, social, and mental health problems. Am Psychol. 1988 Oct;43(10):786–799. doi: 10.1037//0003-066x.43.10.786. [DOI] [PubMed] [Google Scholar]
  147. Lancaster F. E., Mayur B. K., Patsalos P. N., Samorajski T., Wiggins R. C. The synthesis of myelin and brain subcellular membrane proteins in the offspring of rats fed ethanol during pregnancy. Brain Res. 1982 Mar 4;235(1):105–113. doi: 10.1016/0006-8993(82)90199-8. [DOI] [PubMed] [Google Scholar]
  148. Lancaster F., Delaney C., Samorajski T. Synaptic density of caudate-putamen and visual cortex following exposure to ethanol in utero. Int J Dev Neurosci. 1989;7(6):581–589. doi: 10.1016/0736-5748(89)90017-8. [DOI] [PubMed] [Google Scholar]
  149. Lapchak P. A., Araujo D. M., Hefti F. Cholinergic regulation of hippocampal brain-derived neurotrophic factor mRNA expression: evidence from lesion and chronic cholinergic drug treatment studies. Neuroscience. 1993 Feb;52(3):575–585. doi: 10.1016/0306-4522(93)90407-7. [DOI] [PubMed] [Google Scholar]
  150. Largo R. H., Howard J. A. Developmental progression in play behavior of children between nine and thirty months. I: Spontaneous play and imitation. Dev Med Child Neurol. 1979 Jun;21(3):299–310. doi: 10.1111/j.1469-8749.1979.tb01622.x. [DOI] [PubMed] [Google Scholar]
  151. Largo R. H., Howard J. A. Developmental progression in play behavior of children between nine and thirty months: II: Spontaneous play and language development. Dev Med Child Neurol. 1979 Aug;21(4):492–503. doi: 10.1111/j.1469-8749.1979.tb01654.x. [DOI] [PubMed] [Google Scholar]
  152. Lauder J. M. Ontogeny of the serotonergic system in the rat: serotonin as a developmental signal. Ann N Y Acad Sci. 1990;600:297–314. doi: 10.1111/j.1749-6632.1990.tb16891.x. [DOI] [PubMed] [Google Scholar]
  153. Lauder J. M., Schambra U. B. Morphogenetic roles of acetylcholine. Environ Health Perspect. 1999 Feb;107 (Suppl 1):65–69. doi: 10.1289/ehp.99107s165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Lebel J., Mergler D., Lucotte M., Amorim M., Dolbec J., Miranda D., Arantès G., Rheault I., Pichet P. Evidence of early nervous system dysfunction in Amazonian populations exposed to low-levels of methylmercury. Neurotoxicology. 1996 Spring;17(1):157–167. [PubMed] [Google Scholar]
  155. Leech S. L., Richardson G. A., Goldschmidt L., Day N. L. Prenatal substance exposure: effects on attention and impulsivity of 6-year-olds. Neurotoxicol Teratol. 1999 Mar-Apr;21(2):109–118. doi: 10.1016/s0892-0362(98)00042-7. [DOI] [PubMed] [Google Scholar]
  156. Lester B. M., LaGasse L. L., Seifer R. Cocaine exposure and children: the meaning of subtle effects. Science. 1998 Oct 23;282(5389):633–634. doi: 10.1126/science.282.5389.633. [DOI] [PubMed] [Google Scholar]
  157. Levitt P. Prenatal effects of drugs of abuse on brain development. Drug Alcohol Depend. 1998 Jun-Jul;51(1-2):109–125. doi: 10.1016/s0376-8716(98)00070-2. [DOI] [PubMed] [Google Scholar]
  158. Lewis D. P., Van Dyke D. C., Stumbo P. J., Berg M. J. Drug and environmental factors associated with adverse pregnancy outcomes. Part II: Improvement with folic acid. Ann Pharmacother. 1998 Sep;32(9):947–961. doi: 10.1345/aph.17298. [DOI] [PubMed] [Google Scholar]
  159. Li W. F., Matthews C., Disteche C. M., Costa L. G., Furlong C. E. Paraoxonase (PON1) gene in mice: sequencing, chromosomal localization and developmental expression. Pharmacogenetics. 1997 Apr;7(2):137–144. doi: 10.1097/00008571-199704000-00007. [DOI] [PubMed] [Google Scholar]
  160. Lidow M. S., Goldman-Rakic P. S., Rakic P. Synchronized overproduction of neurotransmitter receptors in diverse regions of the primate cerebral cortex. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10218–10221. doi: 10.1073/pnas.88.22.10218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Lidow M. S., Rakic P. Scheduling of monoaminergic neurotransmitter receptor expression in the primate neocortex during postnatal development. Cereb Cortex. 1992 Sep-Oct;2(5):401–416. doi: 10.1093/cercor/2.5.401. [DOI] [PubMed] [Google Scholar]
  162. Liesi P. Ethanol-exposed central neurons fail to migrate and undergo apoptosis. J Neurosci Res. 1997 Jun 1;48(5):439–448. doi: 10.1002/(sici)1097-4547(19970601)48:5<439::aid-jnr5>3.0.co;2-f. [DOI] [PubMed] [Google Scholar]
  163. Lilienthal H., Benthe C., Heinzow B., Winneke G. Impairment of schedule-controlled behavior by pre- and postnatal exposure to hexachlorobenzene in rats. Arch Toxicol. 1996;70(3-4):174–181. doi: 10.1007/s002040050257. [DOI] [PubMed] [Google Scholar]
  164. Lilienthal H., Neuf M., Munoz C., Winneke G. Behavioral effects of pre- and postnatal exposure to a mixture of low chlorinated PCBs in rats. Fundam Appl Toxicol. 1990 Oct;15(3):457–467. doi: 10.1016/0272-0590(90)90032-f. [DOI] [PubMed] [Google Scholar]
  165. Lindefors N., Ernfors P., Falkenberg T., Persson H. Septal cholinergic afferents regulate expression of brain-derived neurotrophic factor and beta-nerve growth factor mRNA in rat hippocampus. Exp Brain Res. 1992;88(1):78–90. doi: 10.1007/BF02259130. [DOI] [PubMed] [Google Scholar]
  166. Lindholm D., Castrén E., Berzaghi M., Blöchl A., Thoenen H. Activity-dependent and hormonal regulation of neurotrophin mRNA levels in the brain--implications for neuronal plasticity. J Neurobiol. 1994 Nov;25(11):1362–1372. doi: 10.1002/neu.480251105. [DOI] [PubMed] [Google Scholar]
  167. Lipton S. A., Kater S. B. Neurotransmitter regulation of neuronal outgrowth, plasticity and survival. Trends Neurosci. 1989 Jul;12(7):265–270. doi: 10.1016/0166-2236(89)90026-x. [DOI] [PubMed] [Google Scholar]
  168. Liu J., Morrow A. L., Devaud L. L., Grayson D. R., Lauder J. M. Regulation of GABA(A) receptor subunit mRNA expression by the pesticide dieldrin in embryonic brainstem cultures: a quantitative, competitive reverse transcription-polymerase chain reaction study. J Neurosci Res. 1997 Sep 1;49(5):645–653. doi: 10.1002/(SICI)1097-4547(19970901)49:5<645::AID-JNR15>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  169. Lyytinen P. Developmental trends in children's pretend play. Child Care Health Dev. 1991 Jan-Feb;17(1):9–25. doi: 10.1111/j.1365-2214.1991.tb00675.x. [DOI] [PubMed] [Google Scholar]
  170. Maier S. E., Miller J. A., West J. R. Prenatal binge-like alcohol exposure in the rat results in region-specific deficits in brain growth. Neurotoxicol Teratol. 1999 May-Jun;21(3):285–291. doi: 10.1016/s0892-0362(98)00056-7. [DOI] [PubMed] [Google Scholar]
  171. Marin-Padilla M. Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization. Z Anat Entwicklungsgesch. 1971;134(2):117–145. doi: 10.1007/BF00519296. [DOI] [PubMed] [Google Scholar]
  172. Martyn C. N., Barker D. J., Osmond C. Motoneuron disease and past poliomyelitis in England and Wales. Lancet. 1988 Jun 11;1(8598):1319–1322. doi: 10.1016/s0140-6736(88)92129-0. [DOI] [PubMed] [Google Scholar]
  173. Mazer C., Muneyyirci J., Taheny K., Raio N., Borella A., Whitaker-Azmitia P. Serotonin depletion during synaptogenesis leads to decreased synaptic density and learning deficits in the adult rat: a possible model of neurodevelopmental disorders with cognitive deficits. Brain Res. 1997 Jun 20;760(1-2):68–73. doi: 10.1016/s0006-8993(97)00297-7. [DOI] [PubMed] [Google Scholar]
  174. McCauley P. T., Bull R. J., Tonti A. P., Lutkenhoff S. D., Meister M. V., Doerger J. U., Stober J. A. The effect of prenatal and postnatal lead exposure on neonatal synaptogenesis in rat cerebral cortex. J Toxicol Environ Health. 1982 Oct-Nov;10(4-5):639–651. doi: 10.1080/15287398209530283. [DOI] [PubMed] [Google Scholar]
  175. McConnell S. K. The specification of neuronal identity in the mammalian cerebral cortex. Experientia. 1990 Sep 15;46(9):922–929. doi: 10.1007/BF01939385. [DOI] [PubMed] [Google Scholar]
  176. Milberger S., Biederman J., Faraone S. V., Chen L., Jones J. Is maternal smoking during pregnancy a risk factor for attention deficit hyperactivity disorder in children? Am J Psychiatry. 1996 Sep;153(9):1138–1142. doi: 10.1176/ajp.153.9.1138. [DOI] [PubMed] [Google Scholar]
  177. Miller M. W. Limited ethanol exposure selectively alters the proliferation of precursor cells in the cerebral cortex. Alcohol Clin Exp Res. 1996 Feb;20(1):139–143. doi: 10.1111/j.1530-0277.1996.tb01056.x. [DOI] [PubMed] [Google Scholar]
  178. Miller M. W. Migration of cortical neurons is altered by gestational exposure to ethanol. Alcohol Clin Exp Res. 1993 Apr;17(2):304–314. doi: 10.1111/j.1530-0277.1993.tb00768.x. [DOI] [PubMed] [Google Scholar]
  179. Miller R. H., Ono K. Morphological analysis of the early stages of oligodendrocyte development in the vertebrate central nervous system. Microsc Res Tech. 1998 Jun 1;41(5):441–453. doi: 10.1002/(SICI)1097-0029(19980601)41:5<441::AID-JEMT10>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  180. Mishkin M., Appenzeller T. The anatomy of memory. Sci Am. 1987 Jun;256(6):80–89. doi: 10.1038/scientificamerican0687-80. [DOI] [PubMed] [Google Scholar]
  181. Mission J. P., Takahashi T., Caviness V. S., Jr Ontogeny of radial and other astroglial cells in murine cerebral cortex. Glia. 1991;4(2):138–148. doi: 10.1002/glia.440040205. [DOI] [PubMed] [Google Scholar]
  182. Mollgaard K., Diamond M. C., Bennett E. L., Rosenzweig M. R., Lindner B. Quantitative synaptic changes with differential experience in rat brain. Int J Neurosci. 1971 Sep;2(3):113–127. doi: 10.3109/00207457109148764. [DOI] [PubMed] [Google Scholar]
  183. Montague P. R., Dayan P., Sejnowski T. J. A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci. 1996 Mar 1;16(5):1936–1947. doi: 10.1523/JNEUROSCI.16-05-01936.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Mortensen S. R., Chanda S. M., Hooper M. J., Padilla S. Maturational differences in chlorpyrifos-oxonase activity may contribute to age-related sensitivity to chlorpyrifos. J Biochem Toxicol. 1996;11(6):279–287. doi: 10.1002/(SICI)1522-7146(1996)11:6<279::AID-JBT3>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  185. Moser V. C., Boyes W. K., MacPhail R. C. Investigations of amitraz neurotoxicity in rats. I. Effects on operant performance. Fundam Appl Toxicol. 1987 Jul;9(1):131–139. doi: 10.1016/0272-0590(87)90160-6. [DOI] [PubMed] [Google Scholar]
  186. Moser V. C., Chanda S. M., Mortensen S. R., Padilla S. Age- and gender-related differences in sensitivity to chlorpyrifos in the rat reflect developmental profiles of esterase activities. Toxicol Sci. 1998 Dec;46(2):211–222. doi: 10.1006/toxs.1998.2526. [DOI] [PubMed] [Google Scholar]
  187. Moser V. C., MacPhail R. C. Differential effects of formamidine pesticides on fixed-interval behavior in rats. Toxicol Appl Pharmacol. 1986 Jun 30;84(2):315–324. doi: 10.1016/0041-008x(86)90139-0. [DOI] [PubMed] [Google Scholar]
  188. Moser V. C., Padilla S. Age- and gender-related differences in the time course of behavioral and biochemical effects produced by oral chlorpyrifos in rats. Toxicol Appl Pharmacol. 1998 Mar;149(1):107–119. doi: 10.1006/taap.1997.8354. [DOI] [PubMed] [Google Scholar]
  189. Mundy W. M., Parran D., Barone S., Jr Gestational exposure to methylmercury alters neurotrophin- and carbachol-stimulated phosphatidylinositide hydrolysis in cerebral cortex of neonatal rats. Neurotox Res. 2000 Apr;1(4):271–283. doi: 10.1007/BF03033257. [DOI] [PubMed] [Google Scholar]
  190. Murata K., Weihe P., Renzoni A., Debes F., Vasconcelos R., Zino F., Araki S., Jørgensen P. J., White R. F., Grandjean P. Delayed evoked potentials in children exposed to methylmercury from seafood. Neurotoxicol Teratol. 1999 Jul-Aug;21(4):343–348. doi: 10.1016/s0892-0362(99)00011-2. [DOI] [PubMed] [Google Scholar]
  191. Murray E. A., Mishkin M. Object recognition and location memory in monkeys with excitotoxic lesions of the amygdala and hippocampus. J Neurosci. 1998 Aug 15;18(16):6568–6582. doi: 10.1523/JNEUROSCI.18-16-06568.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Naeye R. L., Peters E. C. Mental development of children whose mothers smoked during pregnancy. Obstet Gynecol. 1984 Nov;64(5):601–607. [PubMed] [Google Scholar]
  193. Nagashima K. A review of experimental methylmercury toxicity in rats: neuropathology and evidence for apoptosis. Toxicol Pathol. 1997 Nov-Dec;25(6):624–631. doi: 10.1177/019262339702500613. [DOI] [PubMed] [Google Scholar]
  194. Needleman H. L., Riess J. A., Tobin M. J., Biesecker G. E., Greenhouse J. B. Bone lead levels and delinquent behavior. JAMA. 1996 Feb 7;275(5):363–369. [PubMed] [Google Scholar]
  195. Nopoulos P., Torres I., Flaum M., Andreasen N. C., Ehrhardt J. C., Yuh W. T. Brain morphology in first-episode schizophrenia. Am J Psychiatry. 1995 Dec;152(12):1721–1723. doi: 10.1176/ajp.152.12.1721. [DOI] [PubMed] [Google Scholar]
  196. Norton S., Donoso J. A. Forebrain damage following prenatal exposure to low-dose X-irradiation. Exp Neurol. 1985 Feb;87(2):185–197. doi: 10.1016/0014-4886(85)90209-2. [DOI] [PubMed] [Google Scholar]
  197. Norton W. T., Aquino D. A., Hozumi I., Chiu F. C., Brosnan C. F. Quantitative aspects of reactive gliosis: a review. Neurochem Res. 1992 Sep;17(9):877–885. doi: 10.1007/BF00993263. [DOI] [PubMed] [Google Scholar]
  198. Null D. H., Gartside P. S., Wei E. Methylmercury accumulation in brains of pregnant, non-pregnant and fetal rats. Life Sci II. 1973 Jan 22;12(2):65–72. doi: 10.1016/0024-3205(73)90028-3. [DOI] [PubMed] [Google Scholar]
  199. O'Callaghan J. P., Miller D. B. Acute exposure of the neonatal rat to triethyltin results in persistent changes in neurotypic and gliotypic proteins. J Pharmacol Exp Ther. 1988 Jan;244(1):368–378. [PubMed] [Google Scholar]
  200. O'Callaghan J. P., Miller D. B. Assessment of chemically-induced alterations in brain development using assays of neuron- and glia-localized proteins. Neurotoxicology. 1989 Fall;10(3):393–406. [PubMed] [Google Scholar]
  201. O'Rourke N. A., Dailey M. E., Smith S. J., McConnell S. K. Diverse migratory pathways in the developing cerebral cortex. Science. 1992 Oct 9;258(5080):299–302. doi: 10.1126/science.1411527. [DOI] [PubMed] [Google Scholar]
  202. Oberto A., Marks N., Evans H. L., Guidotti A. Lead (Pb+2) promotes apoptosis in newborn rat cerebellar neurons: pathological implications. J Pharmacol Exp Ther. 1996 Oct;279(1):435–442. doi: 10.1163/2211730x96x00234. [DOI] [PubMed] [Google Scholar]
  203. Olson H. C., Streissguth A. P., Sampson P. D., Barr H. M., Bookstein F. L., Thiede K. Association of prenatal alcohol exposure with behavioral and learning problems in early adolescence. J Am Acad Child Adolesc Psychiatry. 1997 Sep;36(9):1187–1194. doi: 10.1097/00004583-199709000-00010. [DOI] [PubMed] [Google Scholar]
  204. Orlebeke J. F., Knol D. L., Verhulst F. C. Increase in child behavior problems resulting from maternal smoking during pregnancy. Arch Environ Health. 1997 Jul-Aug;52(4):317–321. doi: 10.1080/00039899709602205. [DOI] [PubMed] [Google Scholar]
  205. Overman W. H., Bachevalier J., Schuhmann E., Ryan P. Cognitive gender differences in very young children parallel biologically based cognitive gender differences in monkeys. Behav Neurosci. 1996 Aug;110(4):673–684. doi: 10.1037//0735-7044.110.4.673. [DOI] [PubMed] [Google Scholar]
  206. Overman W., Bachevalier J., Turner M., Peuster A. Object recognition versus object discrimination: comparison between human infants and infant monkeys. Behav Neurosci. 1992 Feb;106(1):15–29. doi: 10.1037//0735-7044.106.1.15. [DOI] [PubMed] [Google Scholar]
  207. Owen A., Bird M. Acetylcholine as a regulator of neurite outgrowth and motility in cultured embryonic mouse spinal cord. Neuroreport. 1995 Nov 27;6(17):2269–2272. doi: 10.1097/00001756-199511270-00001. [DOI] [PubMed] [Google Scholar]
  208. Paneth N. The causes of cerebral palsy. Recent evidence. Clin Invest Med. 1993 Apr;16(2):95–102. [PubMed] [Google Scholar]
  209. Parkins E. J. Cerebellum and cerebrum in adaptive control and cognition: a review. Biol Cybern. 1997 Aug;77(2):79–87. doi: 10.1007/s004220050369. [DOI] [PubMed] [Google Scholar]
  210. Patandin S., Lanting C. I., Mulder P. G., Boersma E. R., Sauer P. J., Weisglas-Kuperus N. Effects of environmental exposure to polychlorinated biphenyls and dioxins on cognitive abilities in Dutch children at 42 months of age. J Pediatr. 1999 Jan;134(1):33–41. doi: 10.1016/s0022-3476(99)70369-0. [DOI] [PubMed] [Google Scholar]
  211. Patel A. J., Barochovsky O., Lewis P. D. Psychotropic drugs and brain development: effects on cell replication in vivo and in vitro. Neuropharmacology. 1981 Dec;20(12B):1243–1249. [PubMed] [Google Scholar]
  212. Patterson S. L., Grover L. M., Schwartzkroin P. A., Bothwell M. Neurotrophin expression in rat hippocampal slices: a stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs. Neuron. 1992 Dec;9(6):1081–1088. doi: 10.1016/0896-6273(92)90067-n. [DOI] [PubMed] [Google Scholar]
  213. Paule M. G., Chelonis J. J., Buffalo E. A., Blake D. J., Casey P. H. Operant test battery performance in children: correlation with IQ. Neurotoxicol Teratol. 1999 May-Jun;21(3):223–230. doi: 10.1016/s0892-0362(98)00045-2. [DOI] [PubMed] [Google Scholar]
  214. Paus T., Zijdenbos A., Worsley K., Collins D. L., Blumenthal J., Giedd J. N., Rapoport J. L., Evans A. C. Structural maturation of neural pathways in children and adolescents: in vivo study. Science. 1999 Mar 19;283(5409):1908–1911. doi: 10.1126/science.283.5409.1908. [DOI] [PubMed] [Google Scholar]
  215. Pennington S. N., Sandstrom L. P., Shibley I. A., Jr, Long S. D., Beeker K. R., Smith C. P., Jr, Lee K., Jones T. A., Cummings K. M., Means L. W. Biochemical changes, early brain growth suppression and impaired detour learning in nicotine-treated chicks. Brain Res Dev Brain Res. 1994 Dec 16;83(2):181–189. doi: 10.1016/0165-3806(94)00135-9. [DOI] [PubMed] [Google Scholar]
  216. Petit T. L., Alfano D. P., LeBoutillier J. C. Early lead exposure and the hippocampus: a review and recent advances. Neurotoxicology. 1983 Spring;4(1):79–94. [PubMed] [Google Scholar]
  217. Petit T. L., LeBoutillier J. C. Effects of lead exposure during development on neocortical dendritic and synaptic structure. Exp Neurol. 1979 Jun;64(3):482–492. doi: 10.1016/0014-4886(79)90226-7. [DOI] [PubMed] [Google Scholar]
  218. Petrosini L., Leggio M. G., Molinari M. The cerebellum in the spatial problem solving: a co-star or a guest star? Prog Neurobiol. 1998 Oct;56(2):191–210. doi: 10.1016/s0301-0082(98)00036-7. [DOI] [PubMed] [Google Scholar]
  219. Ponce R. A., Kavanagh T. J., Mottet N. K., Whittaker S. G., Faustman E. M. Effects of methyl mercury on the cell cycle of primary rat CNS cells in vitro. Toxicol Appl Pharmacol. 1994 Jul;127(1):83–90. doi: 10.1006/taap.1994.1142. [DOI] [PubMed] [Google Scholar]
  220. Press F. The suboceanic mantle. Science. 1969 Jul 11;165(3889):174–176. doi: 10.1126/science.165.3889.174. [DOI] [PubMed] [Google Scholar]
  221. Price J. Glial cell lineage and development. Curr Opin Neurobiol. 1994 Oct;4(5):680–686. doi: 10.1016/0959-4388(94)90009-4. [DOI] [PubMed] [Google Scholar]
  222. Pryor J., Silva P. A., Brooke M. Growth, development and behaviour in adolescents born small-for-gestational-age. J Paediatr Child Health. 1995 Oct;31(5):403–407. doi: 10.1111/j.1440-1754.1995.tb00847.x. [DOI] [PubMed] [Google Scholar]
  223. Pérez-Navarro E., Alberch J., Arenas E., Marsal J. Nerve growth factor and its receptor are differentially modified by chronic naltrexone treatment during rat brain development. Neurosci Lett. 1993 Jan 4;149(1):47–50. doi: 10.1016/0304-3940(93)90344-k. [DOI] [PubMed] [Google Scholar]
  224. Raff M. C., Barres B. A., Burne J. F., Coles H. S., Ishizaki Y., Jacobson M. D. Programmed cell death and the control of cell survival: lessons from the nervous system. Science. 1993 Oct 29;262(5134):695–700. doi: 10.1126/science.8235590. [DOI] [PubMed] [Google Scholar]
  225. Rahman H., Kentroti S., Vernadakis A. Neuroblast cell death in ovo and in culture: interaction of ethanol and neurotrophic factors. Neurochem Res. 1994 Dec;19(12):1495–1502. doi: 10.1007/BF00968996. [DOI] [PubMed] [Google Scholar]
  226. Rakic P., Bourgeois J. P., Eckenhoff M. F., Zecevic N., Goldman-Rakic P. S. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science. 1986 Apr 11;232(4747):232–235. doi: 10.1126/science.3952506. [DOI] [PubMed] [Google Scholar]
  227. Rakic P., Bourgeois J. P., Goldman-Rakic P. S. Synaptic development of the cerebral cortex: implications for learning, memory, and mental illness. Prog Brain Res. 1994;102:227–243. doi: 10.1016/S0079-6123(08)60543-9. [DOI] [PubMed] [Google Scholar]
  228. Rakic P., Caviness V. S., Jr Cortical development: view from neurological mutants two decades later. Neuron. 1995 Jun;14(6):1101–1104. doi: 10.1016/0896-6273(95)90258-9. [DOI] [PubMed] [Google Scholar]
  229. Rakic P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol. 1972 May;145(1):61–83. doi: 10.1002/cne.901450105. [DOI] [PubMed] [Google Scholar]
  230. Rantakallio P. A follow-up study up to the age of 14 of children whose mothers smoked during pregnancy. Acta Paediatr Scand. 1983 Sep;72(5):747–753. doi: 10.1111/j.1651-2227.1983.tb09805.x. [DOI] [PubMed] [Google Scholar]
  231. Rantakallio P., Lärä E., Isohanni M., Moilanen I. Maternal smoking during pregnancy and delinquency of the offspring: an association without causation? Int J Epidemiol. 1992 Dec;21(6):1106–1113. doi: 10.1093/ije/21.6.1106. [DOI] [PubMed] [Google Scholar]
  232. Rapoport J. L., Giedd J., Kumra S., Jacobsen L., Smith A., Lee P., Nelson J., Hamburger S. Childhood-onset schizophrenia. Progressive ventricular change during adolescence. Arch Gen Psychiatry. 1997 Oct;54(10):897–903. doi: 10.1001/archpsyc.1997.01830220013002. [DOI] [PubMed] [Google Scholar]
  233. Rauschecker J. P. Auditory cortical plasticity: a comparison with other sensory systems. Trends Neurosci. 1999 Feb;22(2):74–80. doi: 10.1016/s0166-2236(98)01303-4. [DOI] [PubMed] [Google Scholar]
  234. Rauschecker J. P. Developmental plasticity and memory. Behav Brain Res. 1995 Jan 23;66(1-2):7–12. doi: 10.1016/0166-4328(94)00117-x. [DOI] [PubMed] [Google Scholar]
  235. Represa A., Deloulme J. C., Sensenbrenner M., Ben-Ari Y., Baudier J. Neurogranin: immunocytochemical localization of a brain-specific protein kinase C substrate. J Neurosci. 1990 Dec;10(12):3782–3792. doi: 10.1523/JNEUROSCI.10-12-03782.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  236. Reznik BYa, Minkov I. P. The epidemiology of congenital abnormalities of the central nervous system in children. Neurosci Behav Physiol. 1993 Jan-Feb;23(1):94–96. doi: 10.1007/BF01182645. [DOI] [PubMed] [Google Scholar]
  237. Rice D. C. Age-related increase in auditory impairment in monkeys exposed in utero plus postnatally to methylmercury. Toxicol Sci. 1998 Aug;44(2):191–196. doi: 10.1006/toxs.1998.2487. [DOI] [PubMed] [Google Scholar]
  238. Rice D. C. Behavioral deficit (delayed matching to sample) in monkeys exposed from birth to low levels of lead. Toxicol Appl Pharmacol. 1984 Sep 15;75(2):337–345. doi: 10.1016/0041-008x(84)90216-3. [DOI] [PubMed] [Google Scholar]
  239. Rice D. C. Behavioral effects of lead: commonalities between experimental and epidemiologic data. Environ Health Perspect. 1996 Apr;104 (Suppl 2):337–351. doi: 10.1289/ehp.96104s2337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  240. Rice D. C. Behavioral impairment produced by low-level postnatal PCB exposure in monkeys. Environ Res. 1999 Feb;80(2 Pt 2):S113–S121. doi: 10.1006/enrs.1998.3917. [DOI] [PubMed] [Google Scholar]
  241. Rice D. C. Delayed neurotoxicity in monkeys exposed developmentally to methylmercury. Neurotoxicology. 1989 Winter;10(4):645–650. [PubMed] [Google Scholar]
  242. Rice D. C. Effect of postnatal exposure to a PCB mixture in monkeys on multiple fixed interval-fixed ratio performance. Neurotoxicol Teratol. 1997 Nov-Dec;19(6):429–434. doi: 10.1016/s0892-0362(97)87364-3. [DOI] [PubMed] [Google Scholar]
  243. Rice D. C. Effects of lifetime lead exposure on spatial and temporal visual function in monkeys. Neurotoxicology. 1998 Dec;19(6):893–902. [PubMed] [Google Scholar]
  244. Rice D. C. Effects of postnatal exposure of monkeys to a PCB mixture on spatial discrimination reversal and DRL performance. Neurotoxicol Teratol. 1998 Jul-Aug;20(4):391–400. doi: 10.1016/s0892-0362(97)00134-7. [DOI] [PubMed] [Google Scholar]
  245. Rice D. C. Effects of pre- plus postnatal exposure to methylmercury in the monkey on fixed interval and discrimination reversal performance. Neurotoxicology. 1992 Summer;13(2):443–452. [PubMed] [Google Scholar]
  246. Rice D. C. Evidence for delayed neurotoxicity produced by methylmercury. Neurotoxicology. 1996 Fall-Winter;17(3-4):583–596. [PubMed] [Google Scholar]
  247. Rice D. C., Gilbert S. G. Effects of developmental methylmercury exposure or lifetime lead exposure on vibration sensitivity function in monkeys. Toxicol Appl Pharmacol. 1995 Sep;134(1):161–169. doi: 10.1006/taap.1995.1180. [DOI] [PubMed] [Google Scholar]
  248. Rice D. C., Gilbert S. G. Lack of sensitive period for lead-induced behavioral impairment on a spatial delayed alternation task in monkeys. Toxicol Appl Pharmacol. 1990 Apr;103(2):364–373. doi: 10.1016/0041-008x(90)90236-n. [DOI] [PubMed] [Google Scholar]
  249. Rice D. C., Gilbert S. G., Willes R. F. Neonatal low-level lead exposure in monkeys: locomotor activity, schedule-controlled behavior, and the effects of amphetamine. Toxicol Appl Pharmacol. 1979 Dec;51(3):503–513. doi: 10.1016/0041-008x(79)90375-2. [DOI] [PubMed] [Google Scholar]
  250. Rice D. C., Hayward S. Comparison of visual function at adulthood and during aging in monkeys exposed to lead or methylmercury. Neurotoxicology. 1999 Oct;20(5):767–784. [PubMed] [Google Scholar]
  251. Rice D. C. Issues in developmental neurotoxicology: interpretation and implications of the data. Can J Public Health. 1998 May-Jun;89 (Suppl 1):S31-6, S34-40. [PubMed] [Google Scholar]
  252. Rice D. C., Karpinski K. F. Lifetime low-level lead exposure produces deficits in delayed alternation in adult monkeys. Neurotoxicol Teratol. 1988 May-Jun;10(3):207–214. doi: 10.1016/0892-0362(88)90019-0. [DOI] [PubMed] [Google Scholar]
  253. Rice D. C. Lack of effect of methylmercury exposure from birth to adulthood on information processing speed in the monkey. Neurotoxicol Teratol. 1998 May-Jun;20(3):275–283. doi: 10.1016/s0892-0362(97)00099-8. [DOI] [PubMed] [Google Scholar]
  254. Rice D. C. Quantification of operant behavior. Toxicol Lett. 1988 Oct;43(1-3):361–379. doi: 10.1016/0378-4274(88)90038-0. [DOI] [PubMed] [Google Scholar]
  255. Riley E. P., Mattson S. N., Sowell E. R., Jernigan T. L., Sobel D. F., Jones K. L. Abnormalities of the corpus callosum in children prenatally exposed to alcohol. Alcohol Clin Exp Res. 1995 Oct;19(5):1198–1202. doi: 10.1111/j.1530-0277.1995.tb01600.x. [DOI] [PubMed] [Google Scholar]
  256. Robbins T. W. Dissociating executive functions of the prefrontal cortex. Philos Trans R Soc Lond B Biol Sci. 1996 Oct 29;351(1346):1463–1471. doi: 10.1098/rstb.1996.0131. [DOI] [PubMed] [Google Scholar]
  257. Rodier P. M., Aschner M., Sager P. R. Mitotic arrest in the developing CNS after prenatal exposure to methylmercury. Neurobehav Toxicol Teratol. 1984 Sep-Oct;6(5):379–385. [PubMed] [Google Scholar]
  258. Rodier P. M., Ingram J. L., Tisdale B., Croog V. J. Linking etiologies in humans and animal models: studies of autism. Reprod Toxicol. 1997 Mar-Jun;11(2-3):417–422. doi: 10.1016/s0890-6238(97)80001-u. [DOI] [PubMed] [Google Scholar]
  259. Roeleveld N., Zielhuis G. A., Gabreëls F. The prevalence of mental retardation: a critical review of recent literature. Dev Med Child Neurol. 1997 Feb;39(2):125–132. doi: 10.1111/j.1469-8749.1997.tb07395.x. [DOI] [PubMed] [Google Scholar]
  260. Rose S. A. Differential rates of visual information processing in full-term and preterm infants. Child Dev. 1983 Oct;54(5):1189–1198. [PubMed] [Google Scholar]
  261. Rose S. A., Feldman J. F., Wallace I. F. Infant information processing in relation to six-year cognitive outcomes. Child Dev. 1992 Oct;63(5):1126–1141. [PubMed] [Google Scholar]
  262. Rosenzweig M. R., Bennett E. L. Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav Brain Res. 1996 Jun;78(1):57–65. doi: 10.1016/0166-4328(95)00216-2. [DOI] [PubMed] [Google Scholar]
  263. Rothenberg S. J., Poblano A., Garza-Morales S. Prenatal and perinatal low level lead exposure alters brainstem auditory evoked responses in infants. Neurotoxicology. 1994 Fall;15(3):695–699. [PubMed] [Google Scholar]
  264. Roy T. S., Andrews J. E., Seidler F. J., Slotkin T. A. Chlorpyrifos elicits mitotic abnormalities and apoptosis in neuroepithelium of cultured rat embryos. Teratology. 1998 Aug;58(2):62–68. doi: 10.1002/(SICI)1096-9926(199808)58:2<62::AID-TERA7>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  265. Räsänen P., Hakko H., Isohanni M., Hodgins S., Järvelin M. R., Tiihonen J. Maternal smoking during pregnancy and risk of criminal behavior among adult male offspring in the Northern Finland 1966 Birth Cohort. Am J Psychiatry. 1999 Jun;156(6):857–862. doi: 10.1176/ajp.156.6.857. [DOI] [PubMed] [Google Scholar]
  266. Sager P. R., Aschner M., Rodier P. M. Persistent, differential alterations in developing cerebellar cortex of male and female mice after methylmercury exposure. Brain Res. 1984 Jan;314(1):1–11. doi: 10.1016/0165-3806(84)90170-6. [DOI] [PubMed] [Google Scholar]
  267. Salkever D. S. Updated estimates of earnings benefits from reduced exposure of children to environmental lead. Environ Res. 1995 Jul;70(1):1–6. doi: 10.1006/enrs.1995.1038. [DOI] [PubMed] [Google Scholar]
  268. Sampson P. D., Streissguth A. P., Bookstein F. L., Little R. E., Clarren S. K., Dehaene P., Hanson J. W., Graham J. M., Jr Incidence of fetal alcohol syndrome and prevalence of alcohol-related neurodevelopmental disorder. Teratology. 1997 Nov;56(5):317–326. doi: 10.1002/(SICI)1096-9926(199711)56:5<317::AID-TERA5>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  269. Santucci D., Rankin J., Laviola G., Aloe L., Alleva E. Early exposure to aluminium affects eight-arm maze performance and hippocampal nerve growth factor levels in adult mice. Neurosci Lett. 1994 Jan 17;166(1):89–92. doi: 10.1016/0304-3940(94)90847-8. [DOI] [PubMed] [Google Scholar]
  270. Saunders I., Sayer M., Goodale A. The relationship between playfulness and coping in preschool children: a pilot study. Am J Occup Ther. 1999 Mar-Apr;53(2):221–226. doi: 10.5014/ajot.53.2.221. [DOI] [PubMed] [Google Scholar]
  271. Schantz S. L., Moshtaghian J., Ness D. K. Spatial learning deficits in adult rats exposed to ortho-substituted PCB congeners during gestation and lactation. Fundam Appl Toxicol. 1995 Jun;26(1):117–126. doi: 10.1006/faat.1995.1081. [DOI] [PubMed] [Google Scholar]
  272. Scheich H. Auditory cortex: comparative aspects of maps and plasticity. Curr Opin Neurobiol. 1991 Aug;1(2):236–247. doi: 10.1016/0959-4388(91)90084-k. [DOI] [PubMed] [Google Scholar]
  273. Schmahl W., Funk R., Miaskowski U., Plendl J. Long-lasting effects of naltrexone, an opioid receptor antagonist, on cell proliferation in developing rat forebrain. Brain Res. 1989 May 8;486(2):297–300. doi: 10.1016/0006-8993(89)90515-5. [DOI] [PubMed] [Google Scholar]
  274. Schwartz J. Low-level lead exposure and children's IQ: a meta-analysis and search for a threshold. Environ Res. 1994 Apr;65(1):42–55. doi: 10.1006/enrs.1994.1020. [DOI] [PubMed] [Google Scholar]
  275. Schwartz J. Societal benefits of reducing lead exposure. Environ Res. 1994 Jul;66(1):105–124. doi: 10.1006/enrs.1994.1048. [DOI] [PubMed] [Google Scholar]
  276. Sciarillo W. G., Alexander G., Farrell K. P. Lead exposure and child behavior. Am J Public Health. 1992 Oct;82(10):1356–1360. doi: 10.2105/ajph.82.10.1356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  277. Segovia S., del Cerro M. C., Ortega E., Pérez-Laso C., Rodriguez-Zafra C., Izquierdo M. A., Guillamón A. Role of GABAA receptors in the organization of brain and behavioural sex differences. Neuroreport. 1996 Nov 4;7(15-17):2553–2557. doi: 10.1097/00001756-199611040-00030. [DOI] [PubMed] [Google Scholar]
  278. Selemon L. D., Rajkowska G., Goldman-Rakic P. S. Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry. 1995 Oct;52(10):805–820. doi: 10.1001/archpsyc.1995.03950220015005. [DOI] [PubMed] [Google Scholar]
  279. Sen A., Jensen A. R., Sen A. K., Arora I. Correlation between reaction time and intelligence in psychometrically similar groups in America and India. Appl Res Ment Retard. 1983;4(2):139–152. doi: 10.1016/0270-3092(83)90006-1. [DOI] [PubMed] [Google Scholar]
  280. Shenton M. E., Kikinis R., Jolesz F. A., Pollak S. D., LeMay M., Wible C. G., Hokama H., Martin J., Metcalf D., Coleman M. Abnormalities of the left temporal lobe and thought disorder in schizophrenia. A quantitative magnetic resonance imaging study. N Engl J Med. 1992 Aug 27;327(9):604–612. doi: 10.1056/NEJM199208273270905. [DOI] [PubMed] [Google Scholar]
  281. Siegel L. S. Correction for prematurity and its consequences for the assessment of the very low birth weight infant. Child Dev. 1983 Oct;54(5):1176–1188. [PubMed] [Google Scholar]
  282. Silva P. A., McGee R., Williams S. A longitudinal study of the intelligence and behavior of preterm and small for gestational age children. J Dev Behav Pediatr. 1984 Feb;5(1):1–5. [PubMed] [Google Scholar]
  283. Simonati A., Rosso T., Rizzuto N. DNA fragmentation in normal development of the human central nervous system: a morphological study during corticogenesis. Neuropathol Appl Neurobiol. 1997 Jun;23(3):203–211. [PubMed] [Google Scholar]
  284. Slotkin T. A., Lappi S. E., Seidler F. J. Impact of fetal nicotine exposure on development of rat brain regions: critical sensitive periods or effects of withdrawal? Brain Res Bull. 1993;31(3-4):319–328. doi: 10.1016/0361-9230(93)90224-y. [DOI] [PubMed] [Google Scholar]
  285. Smith E. E., Jonides J. Storage and executive processes in the frontal lobes. Science. 1999 Mar 12;283(5408):1657–1661. doi: 10.1126/science.283.5408.1657. [DOI] [PubMed] [Google Scholar]
  286. Song X., Violin J. D., Seidler F. J., Slotkin T. A. Modeling the developmental neurotoxicity of chlorpyrifos in vitro: macromolecule synthesis in PC12 cells. Toxicol Appl Pharmacol. 1998 Jul;151(1):182–191. doi: 10.1006/taap.1998.8424. [DOI] [PubMed] [Google Scholar]
  287. Soriano E., Alvarado-Mallart R. M., Dumesnil N., Del Río J. A., Sotelo C. Cajal-Retzius cells regulate the radial glia phenotype in the adult and developing cerebellum and alter granule cell migration. Neuron. 1997 Apr;18(4):563–577. doi: 10.1016/s0896-6273(00)80298-6. [DOI] [PubMed] [Google Scholar]
  288. Sotelo C., Beaudet A. Influence of experimentally induced agranularity on the synaptogenesis of serotonin nerve terminals in rat cerebellar cortex. Proc R Soc Lond B Biol Sci. 1979 Nov 30;206(1162):133–138. doi: 10.1098/rspb.1979.0096. [DOI] [PubMed] [Google Scholar]
  289. Stanton M. E., Crofton K. M., Gray L. E., Gordon C. J., Boyes W. K., Mole M. L., Peele D. B., Bushnell P. J. Assessment of offspring development and behavior following gestational exposure to inhaled methanol in the rat. Fundam Appl Toxicol. 1995 Nov;28(1):100–110. doi: 10.1006/faat.1995.1151. [DOI] [PubMed] [Google Scholar]
  290. Steckler T., Inglis W., Winn P., Sahgal A. The pedunculopontine tegmental nucleus: a role in cognitive processes? Brain Res Brain Res Rev. 1994 Aug;19(3):298–318. doi: 10.1016/0165-0173(94)90016-7. [DOI] [PubMed] [Google Scholar]
  291. Steen R. G., Ogg R. J., Reddick W. E., Kingsley P. B. Age-related changes in the pediatric brain: quantitative MR evidence of maturational changes during adolescence. AJNR Am J Neuroradiol. 1997 May;18(5):819–828. [PMC free article] [PubMed] [Google Scholar]
  292. Sternfeld M., Ming G., Song H., Sela K., Timberg R., Poo M., Soreq H. Acetylcholinesterase enhances neurite growth and synapse development through alternative contributions of its hydrolytic capacity, core protein, and variable C termini. J Neurosci. 1998 Feb 15;18(4):1240–1249. doi: 10.1523/JNEUROSCI.18-04-01240.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  293. Streissguth A. P., Barr H. M., Olson H. C., Sampson P. D., Bookstein F. L., Burgess D. M. Drinking during pregnancy decreases word attack and arithmetic scores on standardized tests: adolescent data from a population-based prospective study. Alcohol Clin Exp Res. 1994 Apr;18(2):248–254. doi: 10.1111/j.1530-0277.1994.tb00009.x. [DOI] [PubMed] [Google Scholar]
  294. Streissguth A. P., Sampson P. D., Olson H. C., Bookstein F. L., Barr H. M., Scott M., Feldman J., Mirsky A. F. Maternal drinking during pregnancy: attention and short-term memory in 14-year-old offspring--a longitudinal prospective study. Alcohol Clin Exp Res. 1994 Feb;18(1):202–218. doi: 10.1111/j.1530-0277.1994.tb00904.x. [DOI] [PubMed] [Google Scholar]
  295. Streit W. J., Graeber M. B., Kreutzberg G. W. Functional plasticity of microglia: a review. Glia. 1988;1(5):301–307. doi: 10.1002/glia.440010502. [DOI] [PubMed] [Google Scholar]
  296. Strupp B. J., Bunsey M., Levitsky D. A., Hamberger K. Deficient cumulative learning: an animal model of retarded cognitive development. Neurotoxicol Teratol. 1994 Jan-Feb;16(1):71–79. doi: 10.1016/0892-0362(94)90011-6. [DOI] [PubMed] [Google Scholar]
  297. Strömland K., Nordin V., Miller M., Akerström B., Gillberg C. Autism in thalidomide embryopathy: a population study. Dev Med Child Neurol. 1994 Apr;36(4):351–356. doi: 10.1111/j.1469-8749.1994.tb11856.x. [DOI] [PubMed] [Google Scholar]
  298. Sundström R., Karlsson B. Myelin basic protein in brains of rats with low dose lead encephalopathy. Arch Toxicol. 1987 Feb;59(5):341–345. doi: 10.1007/BF00295087. [DOI] [PubMed] [Google Scholar]
  299. Séguin J. R., Pihl R. O., Harden P. W., Tremblay R. E., Boulerice B. Cognitive and neuropsychological characteristics of physically aggressive boys. J Abnorm Psychol. 1995 Nov;104(4):614–624. doi: 10.1037//0021-843x.104.4.614. [DOI] [PubMed] [Google Scholar]
  300. Takahashi T., Nowakowski R. S., Caviness V. S., Jr Early ontogeny of the secondary proliferative population of the embryonic murine cerebral wall. J Neurosci. 1995 Sep;15(9):6058–6068. doi: 10.1523/JNEUROSCI.15-09-06058.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  301. Thach W. T. A role for the cerebellum in learning movement coordination. Neurobiol Learn Mem. 1998 Jul-Sep;70(1-2):177–188. doi: 10.1006/nlme.1998.3846. [DOI] [PubMed] [Google Scholar]
  302. Thomas W. E. Brain macrophages: evaluation of microglia and their functions. Brain Res Brain Res Rev. 1992 Jan-Apr;17(1):61–74. doi: 10.1016/0165-0173(92)90007-9. [DOI] [PubMed] [Google Scholar]
  303. Thompson P. M., Giedd J. N., Woods R. P., MacDonald D., Evans A. C., Toga A. W. Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature. 2000 Mar 9;404(6774):190–193. doi: 10.1038/35004593. [DOI] [PubMed] [Google Scholar]
  304. Tiihonen J., Isohanni M., Räsänen P., Koiranen M., Moring J. Specific major mental disorders and criminality: a 26-year prospective study of the 1966 northern Finland birth cohort. Am J Psychiatry. 1997 Jun;154(6):840–845. doi: 10.1176/ajp.154.6.840. [DOI] [PubMed] [Google Scholar]
  305. Uhlrich D. J., Essock E. A., Lehmkuhle S. Cross-species correspondence of spatial contrast sensitivity functions. Behav Brain Res. 1981 May;2(3):291–299. doi: 10.1016/0166-4328(81)90013-9. [DOI] [PubMed] [Google Scholar]
  306. Ungerer J. A., Sigman M. The relation of play and sensorimotor behavior to language in the second year. Child Dev. 1984 Aug;55(4):1448–1455. [PubMed] [Google Scholar]
  307. Uylings H. B., van Eden C. G. Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. Prog Brain Res. 1990;85:31–62. doi: 10.1016/s0079-6123(08)62675-8. [DOI] [PubMed] [Google Scholar]
  308. Uylings H. B., van Eden C. G. Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. Prog Brain Res. 1990;85:31–62. doi: 10.1016/s0079-6123(08)62675-8. [DOI] [PubMed] [Google Scholar]
  309. Vallés S., Pitarch J., Renau-Piqueras J., Guerri C. Ethanol exposure affects glial fibrillary acidic protein gene expression and transcription during rat brain development. J Neurochem. 1997 Dec;69(6):2484–2493. doi: 10.1046/j.1471-4159.1997.69062484.x. [DOI] [PubMed] [Google Scholar]
  310. Vallés S., Sancho-Tello M., Miñana R., Climent E., Renau-Piqueras J., Guerri C. Glial fibrillary acidic protein expression in rat brain and in radial glia culture is delayed by prenatal ethanol exposure. J Neurochem. 1996 Dec;67(6):2425–2433. doi: 10.1046/j.1471-4159.1996.67062425.x. [DOI] [PubMed] [Google Scholar]
  311. Vernadakis A. Glia-neuron intercommunications and synaptic plasticity. Prog Neurobiol. 1996 Jun;49(3):185–214. doi: 10.1016/s0301-0082(96)00012-3. [DOI] [PubMed] [Google Scholar]
  312. Veronesi B., Pope C. The neurotoxicity of parathion-induced acetylcholinesterase inhibition in neonatal rats. Neurotoxicology. 1990 Fall;11(3):465–482. [PubMed] [Google Scholar]
  313. Volk B. Cerebellar histogenesis and synaptic maturation following pre- and postnatal alcohol administration. An electron-microscopic investigation of the rat cerebellar cortex. Acta Neuropathol. 1984;63(1):57–65. doi: 10.1007/BF00688471. [DOI] [PubMed] [Google Scholar]
  314. Wakschlag L. S., Lahey B. B., Loeber R., Green S. M., Gordon R. A., Leventhal B. L. Maternal smoking during pregnancy and the risk of conduct disorder in boys. Arch Gen Psychiatry. 1997 Jul;54(7):670–676. doi: 10.1001/archpsyc.1997.01830190098010. [DOI] [PubMed] [Google Scholar]
  315. Wallace R. B., Daniels C. E., Altman J. Behavioral effects of neonatal irradiation of the cerebellum. 3. Qualitative observations in aged rats. Dev Psychobiol. 1972;5(1):35–41. doi: 10.1002/dev.420050105. [DOI] [PubMed] [Google Scholar]
  316. Wasserman G. A., Staghezza-Jaramillo B., Shrout P., Popovac D., Graziano J. The effect of lead exposure on behavior problems in preschool children. Am J Public Health. 1998 Mar;88(3):481–486. doi: 10.2105/ajph.88.3.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  317. Watson W. E. Physiology of neuroglia. Physiol Rev. 1974 Apr;54(2):245–271. doi: 10.1152/physrev.1974.54.2.245. [DOI] [PubMed] [Google Scholar]
  318. Webb B., Suarez S. S., Heaton M. B., Walker D. W. Cultured postnatal rat septohippocampal neurons change intracellular calcium in response to ethanol and nerve growth factor. Brain Res. 1997 Dec 19;778(2):354–366. doi: 10.1016/s0006-8993(97)01088-3. [DOI] [PubMed] [Google Scholar]
  319. Webster M. J., Ungerleider L. G., Bachevalier J. Development and plasticity of the neural circuitry underlying visual recognition memory. Can J Physiol Pharmacol. 1995 Sep;73(9):1364–1371. doi: 10.1139/y95-191. [DOI] [PubMed] [Google Scholar]
  320. Weiss B. Risk assessment: the insidious nature of neurotoxicity and the aging brain. Neurotoxicology. 1990 Summer;11(2):305–313. [PubMed] [Google Scholar]
  321. Weiss J. L., Schell R. E. Estimating WAIS-R IQ from the Shipley Institute of Living Scale: a replication. J Clin Psychol. 1991 Jul;47(4):558–562. doi: 10.1002/1097-4679(199107)47:4<558::aid-jclp2270470414>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
  322. Weitzman M., Gortmaker S., Sobol A. Maternal smoking and behavior problems of children. Pediatrics. 1992 Sep;90(3):342–349. [PubMed] [Google Scholar]
  323. Western S. L., Long C. J. Relationship between reaction time and neuropsychological test performance. Arch Clin Neuropsychol. 1996;11(7):557–571. [PubMed] [Google Scholar]
  324. Wetmore C., Olson L., Bean A. J. Regulation of brain-derived neurotrophic factor (BDNF) expression and release from hippocampal neurons is mediated by non-NMDA type glutamate receptors. J Neurosci. 1994 Mar;14(3 Pt 2):1688–1700. doi: 10.1523/JNEUROSCI.14-03-01688.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  325. Whitney K. D., Seidler F. J., Slotkin T. A. Developmental neurotoxicity of chlorpyrifos: cellular mechanisms. Toxicol Appl Pharmacol. 1995 Sep;134(1):53–62. doi: 10.1006/taap.1995.1168. [DOI] [PubMed] [Google Scholar]
  326. Wier P. J., Guerriero F. J., Walker R. F. Implementation of a primary screen for developmental neurotoxicity. Fundam Appl Toxicol. 1989 Jul;13(1):118–136. doi: 10.1016/0272-0590(89)90312-6. [DOI] [PubMed] [Google Scholar]
  327. Wiesel T. N., Hubel D. H. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol. 1965 Nov;28(6):1029–1040. doi: 10.1152/jn.1965.28.6.1029. [DOI] [PubMed] [Google Scholar]
  328. Wiesel T. N. Postnatal development of the visual cortex and the influence of environment. Nature. 1982 Oct 14;299(5884):583–591. doi: 10.1038/299583a0. [DOI] [PubMed] [Google Scholar]
  329. Wiggins R. C. Myelin development and nutritional insufficiency. Brain Res. 1982 Jun;257(2):151–175. doi: 10.1016/0165-0173(82)90016-9. [DOI] [PubMed] [Google Scholar]
  330. Wiggins R. C. Myelination: a critical stage in development. Neurotoxicology. 1986 Summer;7(2):103–120. [PubMed] [Google Scholar]
  331. Williams R. W., Rakic P. Elimination of neurons from the rhesus monkey's lateral geniculate nucleus during development. J Comp Neurol. 1988 Jun 15;272(3):424–436. doi: 10.1002/cne.902720310. [DOI] [PubMed] [Google Scholar]
  332. Williamson P., Drost D., Stanley J., Carr T., Morrison S., Merskey H. Localized phosphorus 31 magnetic resonance spectroscopy in chronic schizophrenic patients and normal controls. Arch Gen Psychiatry. 1991 Jun;48(6):578–578. doi: 10.1001/archpsyc.1991.01810300090013. [DOI] [PubMed] [Google Scholar]
  333. Windebank A. J. Specific inhibition of myelination by lead in vitro; comparison with arsenic, thallium, and mercury. Exp Neurol. 1986 Oct;94(1):203–212. doi: 10.1016/0014-4886(86)90283-9. [DOI] [PubMed] [Google Scholar]
  334. Winneke G., Brockhaus A., Baltissen R. Neurobehavioral and systemic effects of longterm blood lead-elevation in rats. I. Discrimination learning and open field-behavior. Arch Toxicol. 1977 Aug 9;37(4):247–263. doi: 10.1007/BF00330817. [DOI] [PubMed] [Google Scholar]
  335. Wise S. P., Murray E. A., Gerfen C. R. The frontal cortex-basal ganglia system in primates. Crit Rev Neurobiol. 1996;10(3-4):317–356. doi: 10.1615/critrevneurobiol.v10.i3-4.30. [DOI] [PubMed] [Google Scholar]
  336. Wright P., Takei N., Rifkin L., Murray R. M. Maternal influenza, obstetric complications, and schizophrenia. Am J Psychiatry. 1995 Dec;152(12):1714–1720. doi: 10.1176/ajp.152.12.1714. [DOI] [PubMed] [Google Scholar]
  337. Yeh G. C., Hsieh T. H., Chang S. F. The negative influence of endogenous opioid receptor activity on the differentiation of the rat pheochromocytoma PC12 cells induced by nerve growth factor. Neurosci Lett. 1998 Aug 7;252(1):25–28. doi: 10.1016/s0304-3940(98)00528-x. [DOI] [PubMed] [Google Scholar]
  338. Zafra F., Castrén E., Thoenen H., Lindholm D. Interplay between glutamate and gamma-aminobutyric acid transmitter systems in the physiological regulation of brain-derived neurotrophic factor and nerve growth factor synthesis in hippocampal neurons. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10037–10041. doi: 10.1073/pnas.88.22.10037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  339. Zafra F., Hengerer B., Leibrock J., Thoenen H., Lindholm D. Activity dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors. EMBO J. 1990 Nov;9(11):3545–3550. doi: 10.1002/j.1460-2075.1990.tb07564.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  340. Zagon I. S., McLaughlin P. J. Endogenous opioid systems regulate cell proliferation in the developing rat brain. Brain Res. 1987 May 26;412(1):68–72. doi: 10.1016/0006-8993(87)91440-5. [DOI] [PubMed] [Google Scholar]
  341. Zagon I. S., McLaughlin P. J. Increased brain size and cellular content in infant rats treated with an opiate antagonist. Science. 1983 Sep 16;221(4616):1179–1180. doi: 10.1126/science.6612331. [DOI] [PubMed] [Google Scholar]
  342. Zagon I. S., McLaughlin P. J. Naltrexone modulates body and brain development in rats: a role for endogenous opioid systems in growth. Life Sci. 1984 Nov 12;35(20):2057–2064. doi: 10.1016/0024-3205(84)90563-0. [DOI] [PubMed] [Google Scholar]
  343. Zanoli P., Truzzi C., Veneri C., Braghiroli D., Baraldi M. Methyl mercury during late gestation affects temporarily the development of cortical muscarinic receptors in rat offspring. Pharmacol Toxicol. 1994 Nov;75(5):261–264. doi: 10.1111/j.1600-0773.1994.tb00358.x. [DOI] [PubMed] [Google Scholar]
  344. Zecevic N., Bourgeois J. P., Rakic P. Changes in synaptic density in motor cortex of rhesus monkey during fetal and postnatal life. Brain Res Dev Brain Res. 1989 Nov 1;50(1):11–32. doi: 10.1016/0165-3806(89)90124-7. [DOI] [PubMed] [Google Scholar]
  345. Zecevic N., Rakic P. Synaptogenesis in monkey somatosensory cortex. Cereb Cortex. 1991 Nov-Dec;1(6):510–523. doi: 10.1093/cercor/1.6.510. [DOI] [PubMed] [Google Scholar]
  346. Zhou J., Bradford H. F. Nerve growth factors and the control of neurotransmitter phenotype selection in the mammalian central nervous system. Prog Neurobiol. 1997 Sep;53(1):27–43. doi: 10.1016/s0301-0082(97)00030-0. [DOI] [PubMed] [Google Scholar]
  347. Zoeller R. T., Butnariu O. V., Fletcher D. L., Riley E. P. Limited postnatal ethanol exposure permanently alters the expression of mRNAS encoding myelin basic protein and myelin-associated glycoprotein in cerebellum. Alcohol Clin Exp Res. 1994 Aug;18(4):909–916. doi: 10.1111/j.1530-0277.1994.tb00059.x. [DOI] [PubMed] [Google Scholar]
  348. Zola-Morgan S., Squire L. R. Medial temporal lesions in monkeys impair memory on a variety of tasks sensitive to human amnesia. Behav Neurosci. 1985 Feb;99(1):22–34. doi: 10.1037//0735-7044.99.1.22. [DOI] [PubMed] [Google Scholar]
  349. Zola-Morgan S., Squire L. R. The neuropsychology of memory. Parallel findings in humans and nonhuman primates. Ann N Y Acad Sci. 1990;608:434–456. doi: 10.1111/j.1749-6632.1990.tb48905.x. [DOI] [PubMed] [Google Scholar]
  350. da Penha Berzaghi M., Cooper J., Castrén E., Zafra F., Sofroniew M., Thoenen H., Lindholm D. Cholinergic regulation of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) but not neurotrophin-3 (NT-3) mRNA levels in the developing rat hippocampus. J Neurosci. 1993 Sep;13(9):3818–3826. doi: 10.1523/JNEUROSCI.13-09-03818.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES