Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2000 Jun;108(Suppl 3):535–544. doi: 10.1289/ehp.00108s3535

Workshop to identify critical windows of exposure for children's health: neurobehavioral work group summary.

J Adams 1, S Barone Jr 1, A LaMantia 1, R Philen 1, D C Rice 1, L Spear 1, E Susser 1
PMCID: PMC1637822  PMID: 10852852

Abstract

This paper summarizes the deliberations of a work group charged with addressing specific questions relevant to risk estimation in developmental neurotoxicology. We focused on eight questions. a) Does it make sense to think about discrete windows of vulnerability in the development of the nervous system? If it does, which time periods are of greatest importance? b) Are there cascades of developmental disorders in the nervous system? For example, are there critical points that determine the course of development that can lead to differences in vulnerabilities at later times? c) Can information on critical windows suggest the most susceptible subgroups of children (i.e., age groups, socioeconomic status, geographic areas, race, etc.)? d) What are the gaps in existing data for the nervous system or end points of exposure to it? e) What are the best ways to examine exposure-response relationships and estimate exposures in vulnerable life stages? f) What other exposures that affect development at certain ages may interact with exposures of concern? g) How well do laboratory animal data predict human response? h) How can all of this information be used to improve risk assessment and public health (risk management)? In addressing these questions, we provide a brief overview of brain development from conception through adolescence and emphasize vulnerability to toxic insult throughout this period. Methodological issues focus on major variables that influence exposure or its detection through disruptions of behavior, neuroanatomy, or neurochemical end points. Supportive evidence from studies of major neurotoxicants is provided.

Full text

PDF
535

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. Structure-activity and dose-response relationships in the neural and behavioral teratogenesis of retinoids. Neurotoxicol Teratol. 1993 May-Jun;15(3):193–202. doi: 10.1016/0892-0362(93)90015-g. [DOI] [PubMed] [Google Scholar]
  2. Andersen S. L., Dumont N. L., Teicher M. H. Developmental differences in dopamine synthesis inhibition by (+/-)-7-OH-DPAT. Naunyn Schmiedebergs Arch Pharmacol. 1997 Aug;356(2):173–181. doi: 10.1007/pl00005038. [DOI] [PubMed] [Google Scholar]
  3. Barone S., Jr, Das K. P., Lassiter T. L., White L. D. Vulnerable processes of nervous system development: a review of markers and methods. Neurotoxicology. 2000 Feb-Apr;21(1-2):15–36. [PubMed] [Google Scholar]
  4. Barone S., Jr Developmental differences in neural damage following trimethyl-tin as demonstrated with GFAP immunohistochemistry. Ann N Y Acad Sci. 1993 May 28;679:306–316. doi: 10.1111/j.1749-6632.1993.tb18313.x. [DOI] [PubMed] [Google Scholar]
  5. Barone S., Jr, Haykal-Coates N., Parran D. K., Tilson H. A. Gestational exposure to methylmercury alters the developmental pattern of trk-like immunoreactivity in the rat brain and results in cortical dysmorphology. Brain Res Dev Brain Res. 1998 Jul 1;109(1):13–31. doi: 10.1016/s0165-3806(98)00038-8. [DOI] [PubMed] [Google Scholar]
  6. Barone S., Jr, Stanton M. E., Mundy W. R. Neurotoxic effects of neonatal triethyltin (TET) exposure are exacerbated with aging. Neurobiol Aging. 1995 Sep-Oct;16(5):723–735. doi: 10.1016/0197-4580(95)00089-w. [DOI] [PubMed] [Google Scholar]
  7. Bellinger D., Dietrich K. N. Low-level lead exposure and cognitive function in children. Pediatr Ann. 1994 Nov;23(11):600–605. doi: 10.3928/0090-4481-19941101-08. [DOI] [PubMed] [Google Scholar]
  8. Benes F. M. Myelination of cortical-hippocampal relays during late adolescence. Schizophr Bull. 1989;15(4):585–593. doi: 10.1093/schbul/15.4.585. [DOI] [PubMed] [Google Scholar]
  9. Buelke-Sam J., Mactutus C. F. Workshop on the qualitative and quantitative comparability of human and animal developmental neurotoxicity, Work Group II report: testing methods in developmental neurotoxicity for use in human risk assessment. Neurotoxicol Teratol. 1990 May-Jun;12(3):269–274. doi: 10.1016/0892-0362(90)90098-w. [DOI] [PubMed] [Google Scholar]
  10. Burbacher T. M., Rodier P. M., Weiss B. Methylmercury developmental neurotoxicity: a comparison of effects in humans and animals. Neurotoxicol Teratol. 1990 May-Jun;12(3):191–202. doi: 10.1016/0892-0362(90)90091-p. [DOI] [PubMed] [Google Scholar]
  11. Buznikov G. A., Shmukler YuB, Lauder J. M. Changes in the physiological roles of neurotransmitters during individual development. Neurosci Behav Physiol. 1999 Jan-Feb;29(1):11–21. doi: 10.1007/BF02461353. [DOI] [PubMed] [Google Scholar]
  12. Chang L. W., Reuhl K. R., Lee G. W. Degenerative changes in the developing nervous system as a result of in utero exposure to methylmercury. Environ Res. 1977 Dec;14(3):414–423. doi: 10.1016/0013-9351(77)90049-4. [DOI] [PubMed] [Google Scholar]
  13. Choi S., Weisberg S. N., Kellogg C. K. Control of endogenous norepinephrine release in the hypothalamus of male rats changes over adolescent development. Brain Res Dev Brain Res. 1997 Jan 2;98(1):134–141. doi: 10.1016/s0165-3806(96)00179-4. [DOI] [PubMed] [Google Scholar]
  14. Cookman G. R., Hemmens S. E., Keane G. J., King W. B., Regan C. M. Chronic low level lead exposure precociously induces rat glial development in vitro and in vivo. Neurosci Lett. 1988 Mar 21;86(1):33–37. doi: 10.1016/0304-3940(88)90178-4. [DOI] [PubMed] [Google Scholar]
  15. Cookman G. R., King W., Regan C. M. Chronic low-level lead exposure impairs embryonic to adult conversion of the neural cell adhesion molecule. J Neurochem. 1987 Aug;49(2):399–403. doi: 10.1111/j.1471-4159.1987.tb02879.x. [DOI] [PubMed] [Google Scholar]
  16. Dansky L. V., Finnell R. H. Parental epilepsy, anticonvulsant drugs, and reproductive outcome: epidemiologic and experimental findings spanning three decades; 2: Human studies. Reprod Toxicol. 1991;5(4):301–335. doi: 10.1016/0890-6238(91)90091-s. [DOI] [PubMed] [Google Scholar]
  17. Davis J. M., Otto D. A., Weil D. E., Grant L. D. The comparative developmental neurotoxicity of lead in humans and animals. Neurotoxicol Teratol. 1990 May-Jun;12(3):215–229. doi: 10.1016/0892-0362(90)90093-r. [DOI] [PubMed] [Google Scholar]
  18. Dietrich K. N., Berger O. G., Succop P. A., Hammond P. B., Bornschein R. L. The developmental consequences of low to moderate prenatal and postnatal lead exposure: intellectual attainment in the Cincinnati Lead Study Cohort following school entry. Neurotoxicol Teratol. 1993 Jan-Feb;15(1):37–44. doi: 10.1016/0892-0362(93)90043-n. [DOI] [PubMed] [Google Scholar]
  19. Dietrich K. N., Succop P. A., Bornschein R. L., Krafft K. M., Berger O., Hammond P. B., Buncher C. R. Lead exposure and neurobehavioral development in later infancy. Environ Health Perspect. 1990 Nov;89:13–19. doi: 10.1289/ehp.908913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Dumas TC, Foster TC. Late developmental changes in the ability of adenosine A1 receptors to regulate synaptic transmission in the hippocampus. Brain Res Dev Brain Res. 1998 Jan 14;105(1):137–139. [PubMed] [Google Scholar]
  21. Finnell R. H., Dansky L. V. Parental epilepsy, anticonvulsant drugs, and reproductive outcome: epidemiologic and experimental findings spanning three decades; 1: Animal studies. Reprod Toxicol. 1991;5(4):281–299. doi: 10.1016/0890-6238(91)90090-3. [DOI] [PubMed] [Google Scholar]
  22. Freeman J. H., Jr, Barone S., Jr, Stanton M. E. Cognitive and neuroanatomical effects of triethyltin in developing rats: role of age of exposure. Brain Res. 1994 Jan 14;634(1):85–95. doi: 10.1016/0006-8993(94)90261-5. [DOI] [PubMed] [Google Scholar]
  23. Freeman J. H., Jr, Barone S., Jr, Stanton M. E. Cognitive and neuroanatomical effects of triethyltin in developing rats: role of age of exposure. Brain Res. 1994 Jan 14;634(1):85–95. doi: 10.1016/0006-8993(94)90261-5. [DOI] [PubMed] [Google Scholar]
  24. Freeman J. H., Jr, Barone S., Jr, Stanton M. E. Disruption of cerebellar maturation by an antimitotic agent impairs the ontogeny of eyeblink conditioning in rats. J Neurosci. 1995 Nov;15(11):7301–7314. doi: 10.1523/JNEUROSCI.15-11-07301.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Gilbert M. E., Mack C. M., Lasley S. M. The influence of developmental period of lead exposure on long-term potentiation in the adult rat dentate gyrus in vivo. Neurotoxicology. 1999 Feb;20(1):57–69. [PubMed] [Google Scholar]
  26. Harry G. J., Toews A. D., Krigman M. R., Morell P. The effect of lead toxicity and milk deprivation of myelination in the rat. Toxicol Appl Pharmacol. 1985 Mar 15;77(3):458–464. doi: 10.1016/0041-008x(85)90186-3. [DOI] [PubMed] [Google Scholar]
  27. Haykal-Coates N., Shafer T. J., Mundy W. R., Barone S., Jr Effects of gestational methylmercury exposure on immunoreactivity of specific isoforms of PKC and enzyme activity during post-natal development of the rat brain. Brain Res Dev Brain Res. 1998 Jul 1;109(1):33–49. doi: 10.1016/s0165-3806(98)00039-x. [DOI] [PubMed] [Google Scholar]
  28. Henderson M. G., McConnaughey M. M., McMillen B. A. Long-term consequences of prenatal exposure to cocaine or related drugs: effects on rat brain monoaminergic receptors. Brain Res Bull. 1991 Jun;26(6):941–945. doi: 10.1016/0361-9230(91)90261-h. [DOI] [PubMed] [Google Scholar]
  29. Hoek H. W., Brown A. S., Susser E. The Dutch famine and schizophrenia spectrum disorders. Soc Psychiatry Psychiatr Epidemiol. 1998 Aug;33(8):373–379. doi: 10.1007/s001270050068. [DOI] [PubMed] [Google Scholar]
  30. Hoff S. F. Synaptogenesis in the hippocampal dentate gyrus: effects of in utero ethanol exposure. Brain Res Bull. 1988 Jul;21(1):47–54. doi: 10.1016/0361-9230(88)90119-0. [DOI] [PubMed] [Google Scholar]
  31. Holson R. R., Gazzara R. A., Ferguson S. A., Adams J. A behavioral and neuroanatomical investigation of the lethality caused by gestational day 11-13 retinoic acid exposure. Neurotoxicol Teratol. 1997 Sep-Oct;19(5):347–353. doi: 10.1016/s0892-0362(97)00040-8. [DOI] [PubMed] [Google Scholar]
  32. Holson R. R., Gazzara R. A., Ferguson S. A., Adams J. Behavioral effects of low-dose gestational day 11-13 retinoic acid exposure. Neurotoxicol Teratol. 1997 Sep-Oct;19(5):355–362. doi: 10.1016/s0892-0362(97)00041-x. [DOI] [PubMed] [Google Scholar]
  33. Holson R. R., Gazzara R. A., Ferguson S. A., Ali S. F., Laborde J. B., Adams J. Gestational retinoic acid exposure: a sensitive period for effects on neonatal mortality and cerebellar development. Neurotoxicol Teratol. 1997 Sep-Oct;19(5):335–346. doi: 10.1016/s0892-0362(97)00039-1. [DOI] [PubMed] [Google Scholar]
  34. Jernigan T. L., Trauner D. A., Hesselink J. R., Tallal P. A. Maturation of human cerebrum observed in vivo during adolescence. Brain. 1991 Oct;114(Pt 5):2037–2049. doi: 10.1093/brain/114.5.2037. [DOI] [PubMed] [Google Scholar]
  35. Johnston M. V., Goldstein G. W. Selective vulnerability of the developing brain to lead. Curr Opin Neurol. 1998 Dec;11(6):689–693. doi: 10.1097/00019052-199812000-00013. [DOI] [PubMed] [Google Scholar]
  36. Kawamoto J. C., Overmann S. R., Woolley D. E., Vijayan V. K. Morphometric effects of preweaning lead exposure on the hippocampal formation of adult rats. Neurotoxicology. 1984 Fall;5(3):125–148. [PubMed] [Google Scholar]
  37. Kelley B. M., Groseclose C. H., Middaugh L. D. Prenatal cocaine exposure increases the reinforcing strength of oral ethanol in C57 mice. Neurotoxicol Teratol. 1997 Sep-Oct;19(5):391–398. doi: 10.1016/s0892-0362(97)00022-6. [DOI] [PubMed] [Google Scholar]
  38. Kempermann G., Gage F. H. New nerve cells for the adult brain. Sci Am. 1999 May;280(5):48–53. doi: 10.1038/scientificamerican0599-48. [DOI] [PubMed] [Google Scholar]
  39. Keshavan M. S., Hogarty G. E. Brain maturational processes and delayed onset in schizophrenia. Dev Psychopathol. 1999 Summer;11(3):525–543. doi: 10.1017/s0954579499002199. [DOI] [PubMed] [Google Scholar]
  40. Kimmel C. A., Buelke-Sam J. Collaborative Behavioral Teratology Study: background and overview. Neurobehav Toxicol Teratol. 1985 Nov-Dec;7(6):541–545. [PubMed] [Google Scholar]
  41. LaMantia A. S. Forebrain induction, retinoic acid, and vulnerability to schizophrenia: insights from molecular and genetic analysis in developing mice. Biol Psychiatry. 1999 Jul 1;46(1):19–30. doi: 10.1016/s0006-3223(99)00002-5. [DOI] [PubMed] [Google Scholar]
  42. Lammer E. J., Chen D. T., Hoar R. M., Agnish N. D., Benke P. J., Braun J. T., Curry C. J., Fernhoff P. M., Grix A. W., Jr, Lott I. T. Retinoic acid embryopathy. N Engl J Med. 1985 Oct 3;313(14):837–841. doi: 10.1056/NEJM198510033131401. [DOI] [PubMed] [Google Scholar]
  43. Lasley S. M., Green M. C., Gilbert M. E. Influence of exposure period on in vivo hippocampal glutamate and GABA release in rats chronically exposed to lead. Neurotoxicology. 1999 Aug;20(4):619–629. [PubMed] [Google Scholar]
  44. Lewis D. A. Development of the prefrontal cortex during adolescence: insights into vulnerable neural circuits in schizophrenia. Neuropsychopharmacology. 1997 Jun;16(6):385–398. doi: 10.1016/S0893-133X(96)00277-1. [DOI] [PubMed] [Google Scholar]
  45. McCauley P. T., Bull R. J., Tonti A. P., Lutkenhoff S. D., Meister M. V., Doerger J. U., Stober J. A. The effect of prenatal and postnatal lead exposure on neonatal synaptogenesis in rat cerebral cortex. J Toxicol Environ Health. 1982 Oct-Nov;10(4-5):639–651. doi: 10.1080/15287398209530283. [DOI] [PubMed] [Google Scholar]
  46. Moody C. A., Frambes N. A., Spear L. P. Psychopharmacological responsiveness to the dopamine agonist quinpirole in normal weanlings and in weanling offspring exposed gestationally to cocaine. Psychopharmacology (Berl) 1992;108(3):256–262. doi: 10.1007/BF02245109. [DOI] [PubMed] [Google Scholar]
  47. Paule M. G., Meck W. H., McMillan D. E., McClure G. Y., Bateson M., Popke E. J., Chelonis J. J., Hinton S. C. The use of timing behaviors in animals and humans to detect drug and/or toxicant effects. Neurotoxicol Teratol. 1999 Sep-Oct;21(5):491–502. doi: 10.1016/s0892-0362(99)00015-x. [DOI] [PubMed] [Google Scholar]
  48. Rice D. C. Age-related increase in auditory impairment in monkeys exposed in utero plus postnatally to methylmercury. Toxicol Sci. 1998 Aug;44(2):191–196. doi: 10.1006/toxs.1998.2487. [DOI] [PubMed] [Google Scholar]
  49. Rice D. C. Behavioral effects of lead: commonalities between experimental and epidemiologic data. Environ Health Perspect. 1996 Apr;104 (Suppl 2):337–351. doi: 10.1289/ehp.96104s2337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Rice D. C., Hayward S. Comparison of visual function at adulthood and during aging in monkeys exposed to lead or methylmercury. Neurotoxicology. 1999 Oct;20(5):767–784. [PubMed] [Google Scholar]
  51. Rice D., Barone S., Jr Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000 Jun;108 (Suppl 3):511–533. doi: 10.1289/ehp.00108s3511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Rodier P. M., Ingram J. L., Tisdale B., Nelson S., Romano J. Embryological origin for autism: developmental anomalies of the cranial nerve motor nuclei. J Comp Neurol. 1996 Jun 24;370(2):247–261. doi: 10.1002/(SICI)1096-9861(19960624)370:2<247::AID-CNE8>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  53. Salimov R. M., McBride W. J., McKinzie D. L., Lumeng L., Li T. K. Effects of ethanol consumption by adolescent alcohol-preferring P rats on subsequent behavioral performance in the cross-maze and slip funnel tests. Alcohol. 1996 May-Jun;13(3):297–300. doi: 10.1016/0741-8329(95)02060-8. [DOI] [PubMed] [Google Scholar]
  54. Schaefer G. B., Bodensteiner J. B. Evaluation of the child with idiopathic mental retardation. Pediatr Clin North Am. 1992 Aug;39(4):929–943. doi: 10.1016/s0031-3955(16)38381-x. [DOI] [PubMed] [Google Scholar]
  55. Selten J. P., Brown A. S., Moons K. G., Slaets J. P., Susser E. S., Kahn R. S. Prenatal exposure to the 1957 influenza pandemic and non-affective psychosis in The Netherlands. Schizophr Res. 1999 Aug 17;38(2-3):85–91. doi: 10.1016/s0920-9964(99)00005-5. [DOI] [PubMed] [Google Scholar]
  56. Spear L. P., Campbell J., Snyder K., Silveri M., Katovic N. Animal behavior models. Increased sensitivity to stressors and other environmental experiences after prenatal cocaine exposure. Ann N Y Acad Sci. 1998 Jun 21;846:76–88. [PubMed] [Google Scholar]
  57. Stanton M. E., Spear L. P. Workshop on the qualitative and quantitative comparability of human and animal developmental neurotoxicity, Work Group I report: comparability of measures of developmental neurotoxicity in humans and laboratory animals. Neurotoxicol Teratol. 1990 May-Jun;12(3):261–267. doi: 10.1016/0892-0362(90)90097-v. [DOI] [PubMed] [Google Scholar]
  58. Strupp B. J., Bunsey M., Levitsky D. A., Hamberger K. Deficient cumulative learning: an animal model of retarded cognitive development. Neurotoxicol Teratol. 1994 Jan-Feb;16(1):71–79. doi: 10.1016/0892-0362(94)90011-6. [DOI] [PubMed] [Google Scholar]
  59. Strupp B. J., Himmelstein S., Bunsey M., Levitsky D. A., Kesler M. Cognitive profile of rats exposed to lactational hyperphenylalaninemia: correspondence with human mental retardation. Dev Psychobiol. 1990 Apr;23(3):195–214. doi: 10.1002/dev.420230302. [DOI] [PubMed] [Google Scholar]
  60. Susser E. B., Brown A., Matte T. D. Prenatal factors and adult mental and physical health. Can J Psychiatry. 1999 May;44(4):326–334. doi: 10.1177/070674379904400402. [DOI] [PubMed] [Google Scholar]
  61. Teicher M. H., Barber N. I., Gelbard H. A., Gallitano A. L., Campbell A., Marsh E., Baldessarini R. J. Developmental differences in acute nigrostriatal and mesocorticolimbic system response to haloperidol. Neuropsychopharmacology. 1993 Sep;9(2):147–156. doi: 10.1038/npp.1993.53. [DOI] [PubMed] [Google Scholar]
  62. Vorhees C. V. Fetal anticonvulsant syndrome in rats: dose- and period-response relationships of prenatal diphenylhydantoin, trimethadione and phenobarbital exposure on the structural and functional development of the offspring. J Pharmacol Exp Ther. 1983 Nov;227(2):274–287. [PubMed] [Google Scholar]
  63. Vorhees C. V. Reliability, sensitivity and validity of behavioral indices of neurotoxicity. Neurotoxicol Teratol. 1987 Nov-Dec;9(6):445–464. doi: 10.1016/0892-0362(87)90056-0. [DOI] [PubMed] [Google Scholar]
  64. Zecevic N., Rakic P. Synaptogenesis in monkey somatosensory cortex. Cereb Cortex. 1991 Nov-Dec;1(6):510–523. doi: 10.1093/cercor/1.6.510. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES