Abstract
Idiopathic Parkinson's disease (IPD) represents a common neurodegenerative disorder. An estimated 2% of the U.S. population, age 65 and older, develops IPD. The number of IPD patients will certainly increase over the next several decades as the baby-boomers gradually step into this high-risk age group, concomitant with the increase in the average life expectancy. While many studies have suggested that industrial chemicals and pesticides may underlie IPD, its etiology remains elusive. Among the toxic metals, the relationship between manganese intoxication and IPD has long been recognized. The neurological signs of manganism have received close attention because they resemble several clinical disorders collectively described as extrapyramidal motor system dysfunction, and in particular, IPD and dystonia. However, distinct dissimilarities between IPD and manganism are well established, and it remains to be determined whether Mn plays an etiologic role in IPD. It is particularly noteworthy that as a result of a recent court decision, methylcyclopentadienyl Mn tricarbonyl (MMT) is presently available in the United States and Canada for use in fuel, replacing lead as an antiknock additive. The impact of potential long-term exposure to low levels of MMT combustion products that may be present in emissions from automobiles has yet to be fully evaluated. Nevertheless, it should be pointed out that recent studies with various environmental modeling approaches in the Montreal metropolitan (where MMT has been used for more than 10 years) suggest that airborne Mn levels were quite similar to those in areas where MMT was not used. These studies also show that Mn is emitted from the tail pipe of motor vehicles primarily as a mixture of manganese phosphate and manganese sulfate. This brief review characterizes the Mn speciation in the blood and the transport kinetics of Mn into the central nervous system, a critical step in the accumulation of Mn within the brain, outlines the potential susceptibility of selected populations (e.g., iron-deficient) to Mn exposure, and addresses future research needs for Mn.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aisen P., Aasa R., Redfield A. G. The chromium, manganese, and cobalt complexes of transferrin. J Biol Chem. 1969 Sep 10;244(17):4628–4633. [PubMed] [Google Scholar]
- Aschner M., Aschner J. L. Manganese transport across the blood-brain barrier: relationship to iron homeostasis. Brain Res Bull. 1990 Jun;24(6):857–860. doi: 10.1016/0361-9230(90)90152-p. [DOI] [PubMed] [Google Scholar]
- Aschner M., Gannon M. Manganese (Mn) transport across the rat blood-brain barrier: saturable and transferrin-dependent transport mechanisms. Brain Res Bull. 1994;33(3):345–349. doi: 10.1016/0361-9230(94)90204-6. [DOI] [PubMed] [Google Scholar]
- Aschner M., Vrana K. E., Zheng W. Manganese uptake and distribution in the central nervous system (CNS). Neurotoxicology. 1999 Apr-Jun;20(2-3):173–180. [PubMed] [Google Scholar]
- Barbeau A., Inoué N., Cloutier T. Role of manganese in dystonia. Adv Neurol. 1976;14:339–352. [PubMed] [Google Scholar]
- Barbeau A. Manganese and extrapyramidal disorders (a critical review and tribute to Dr. George C. Cotzias). Neurotoxicology. 1984 Spring;5(1):13–35. [PubMed] [Google Scholar]
- Baynes R. D., Cook J. D. Current issues in iron deficiency. Curr Opin Hematol. 1996 Mar;3(2):145–149. doi: 10.1097/00062752-199603020-00007. [DOI] [PubMed] [Google Scholar]
- Bothwell T. H. Overview and mechanisms of iron regulation. Nutr Rev. 1995 Sep;53(9):237–245. doi: 10.1111/j.1753-4887.1995.tb05480.x. [DOI] [PubMed] [Google Scholar]
- Calne D. B., Chu N. S., Huang C. C., Lu C. S., Olanow W. Manganism and idiopathic parkinsonism: similarities and differences. Neurology. 1994 Sep;44(9):1583–1586. doi: 10.1212/wnl.44.9.1583. [DOI] [PubMed] [Google Scholar]
- Cotzias G. C., Horiuchi K., Fuenzalida S., Mena I. Chronic manganese poisoning. Clearance of tissue manganese concentrations with persistance of the neurological picture. Neurology. 1968 Apr;18(4):376–382. doi: 10.1212/wnl.18.4.376. [DOI] [PubMed] [Google Scholar]
- Critchfield J. W., Carl G. F., Keen C. L. The influence of manganese supplementation on seizure onset and severity, and brain monoamines in the genetically epilepsy prone rat. Epilepsy Res. 1993 Jan;14(1):3–10. doi: 10.1016/0920-1211(93)90069-j. [DOI] [PubMed] [Google Scholar]
- Dickinson T. K., Devenyi A. G., Connor J. R. Distribution of injected iron 59 and manganese 54 in hypotransferrinemic mice. J Lab Clin Med. 1996 Sep;128(3):270–278. doi: 10.1016/s0022-2143(96)90028-1. [DOI] [PubMed] [Google Scholar]
- Diez-Ewald M., Weintraub L. R., Crosby W. H. Interrelationship of iron and manganese metabolism. Proc Soc Exp Biol Med. 1968 Nov;129(2):448–451. doi: 10.3181/00379727-129-33341. [DOI] [PubMed] [Google Scholar]
- Eriksson H., Tedroff J., Thuomas K. A., Aquilonius S. M., Hartvig P., Fasth K. J., Bjurling P., Långström B., Hedström K. G., Heilbronn E. Manganese induced brain lesions in Macaca fascicularis as revealed by positron emission tomography and magnetic resonance imaging. Arch Toxicol. 1992;66(6):403–407. doi: 10.1007/BF02035130. [DOI] [PubMed] [Google Scholar]
- Foradori A. C., Bertinchamps A., Gulibon J. M., Cotzias G. C. The discrimination between magnesium and manganese by serum proteins. J Gen Physiol. 1967 Oct;50(9):2255–2266. doi: 10.1085/jgp.50.9.2255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gavin C. E., Gunter K. K., Gunter T. E. Manganese and calcium efflux kinetics in brain mitochondria. Relevance to manganese toxicity. Biochem J. 1990 Mar 1;266(2):329–334. doi: 10.1042/bj2660329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gianutsos G., Morrow G. R., Morris J. B. Accumulation of manganese in rat brain following intranasal administration. Fundam Appl Toxicol. 1997 Jun;37(2):102–105. doi: 10.1006/faat.1997.2306. [DOI] [PubMed] [Google Scholar]
- Grafstein B., Forman D. S. Intracellular transport in neurons. Physiol Rev. 1980 Oct;60(4):1167–1283. doi: 10.1152/physrev.1980.60.4.1167. [DOI] [PubMed] [Google Scholar]
- He P., Liu D. H., Zhang G. Q. [Effects of high-level-manganese sewage irrigation on children's neurobehavior]. Zhonghua Yu Fang Yi Xue Za Zhi. 1994 Jul;28(4):216–218. [PubMed] [Google Scholar]
- Hill J. M., Ruff M. R., Weber R. J., Pert C. B. Transferrin receptors in rat brain: neuropeptide-like pattern and relationship to iron distribution. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4553–4557. doi: 10.1073/pnas.82.13.4553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ingersoll R. T., Montgomery E. B., Jr, Aposhian H. V. Central nervous system toxicity of manganese. I. Inhibition of spontaneous motor activity in rats after intrathecal administration of manganese chloride. Fundam Appl Toxicol. 1995 Aug;27(1):106–113. doi: 10.1006/faat.1995.1113. [DOI] [PubMed] [Google Scholar]
- Komura J., Sakamoto M. Chronic oral administration of methylcyclopentadienyl manganese tricarbonyl altered brain biogenic amines in the mouse: comparison with inorganic manganese. Toxicol Lett. 1994 Jul;73(1):65–73. doi: 10.1016/0378-4274(94)90189-9. [DOI] [PubMed] [Google Scholar]
- Kuratko C. N. Decrease of manganese superoxide dismutase activity in rats fed high levels of iron during colon carcinogenesis. Food Chem Toxicol. 1998 Sep-Oct;36(9-10):819–824. doi: 10.1016/s0278-6915(98)00029-5. [DOI] [PubMed] [Google Scholar]
- London R. E., Toney G., Gabel S. A., Funk A. Magnetic resonance imaging studies of the brains of anesthetized rats treated with manganese chloride. Brain Res Bull. 1989 Sep;23(3):229–235. doi: 10.1016/0361-9230(89)90152-4. [DOI] [PubMed] [Google Scholar]
- Lynam D. R., Roos J. W., Pfeifer G. D., Fort B. F., Pullin T. G. Environmental effects and exposures to manganese from use of methylcyclopentadienyl manganese tricarbonyl (MMT) in gasoline. Neurotoxicology. 1999 Apr-Jun;20(2-3):145–150. [PubMed] [Google Scholar]
- Murphy V. A., Wadhwani K. C., Smith Q. R., Rapoport S. I. Saturable transport of manganese(II) across the rat blood-brain barrier. J Neurochem. 1991 Sep;57(3):948–954. doi: 10.1111/j.1471-4159.1991.tb08242.x. [DOI] [PubMed] [Google Scholar]
- Nagy J. I., Carter D. A., Lehmann J., Fibiger H. C. Evidence for a GABA-containing projection from the entopeduncular nucleus to the lateral habenula in the rat. Brain Res. 1978 Apr 28;145(2):360–364. doi: 10.1016/0006-8993(78)90869-7. [DOI] [PubMed] [Google Scholar]
- Pardridge W. M., Eisenberg J., Yang J. Human blood-brain barrier transferrin receptor. Metabolism. 1987 Sep;36(9):892–895. doi: 10.1016/0026-0495(87)90099-0. [DOI] [PubMed] [Google Scholar]
- Patel A. B., Pandya A. A. Effects of chronic manganese toxicity on tissue levels and urinary excretion of nicotinamide nucleotides in rats. Hum Exp Toxicol. 1994 May;13(5):307–309. doi: 10.1177/096032719401300503. [DOI] [PubMed] [Google Scholar]
- Prohaska J. R. Functions of trace elements in brain metabolism. Physiol Rev. 1987 Jul;67(3):858–901. doi: 10.1152/physrev.1987.67.3.858. [DOI] [PubMed] [Google Scholar]
- Rabin O., Hegedus L., Bourre J. M., Smith Q. R. Rapid brain uptake of manganese(II) across the blood-brain barrier. J Neurochem. 1993 Aug;61(2):509–517. doi: 10.1111/j.1471-4159.1993.tb02153.x. [DOI] [PubMed] [Google Scholar]
- Roels H., Meiers G., Delos M., Ortega I., Lauwerys R., Buchet J. P., Lison D. Influence of the route of administration and the chemical form (MnCl2, MnO2) on the absorption and cerebral distribution of manganese in rats. Arch Toxicol. 1997;71(4):223–230. doi: 10.1007/s002040050380. [DOI] [PubMed] [Google Scholar]
- Scheuhammer A. M., Cherian M. G. Binding of manganese in human and rat plasma. Biochim Biophys Acta. 1985 Jun 18;840(2):163–169. doi: 10.1016/0304-4165(85)90115-1. [DOI] [PubMed] [Google Scholar]
- Schwartz W. J., 3rd, Thurnau G. R. Iron deficiency anemia in pregnancy. Clin Obstet Gynecol. 1995 Sep;38(3):443–454. doi: 10.1097/00003081-199509000-00004. [DOI] [PubMed] [Google Scholar]
- Sloot W. N., Gramsbergen J. B. Axonal transport of manganese and its relevance to selective neurotoxicity in the rat basal ganglia. Brain Res. 1994 Sep 19;657(1-2):124–132. doi: 10.1016/0006-8993(94)90959-8. [DOI] [PubMed] [Google Scholar]
- Suárez N., Eriksson H. Receptor-mediated endocytosis of a manganese complex of transferrin into neuroblastoma (SHSY5Y) cells in culture. J Neurochem. 1993 Jul;61(1):127–131. doi: 10.1111/j.1471-4159.1993.tb03546.x. [DOI] [PubMed] [Google Scholar]
- Szarfarc S. C., de Souza S. B. Prevalence and risk factors in iron deficiency and anemia. Arch Latinoam Nutr. 1997 Jun;47(2 Suppl 1):35–38. [PubMed] [Google Scholar]
- Takeda A., Ishiwatari S., Okada S. Manganese uptake into rat brain during development and aging. J Neurosci Res. 1999 Apr 1;56(1):93–98. doi: 10.1002/(SICI)1097-4547(19990401)56:1<93::AID-JNR12>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
- Takeda A., Sawashita J., Okada S. Localization in rat brain of the trace metals, zinc and manganese, after intracerebroventricular injection. Brain Res. 1994 Sep 26;658(1-2):252–254. doi: 10.1016/s0006-8993(09)90032-4. [DOI] [PubMed] [Google Scholar]
- Tjälve H., Henriksson J., Tallkvist J., Larsson B. S., Lindquist N. G. Uptake of manganese and cadmium from the nasal mucosa into the central nervous system via olfactory pathways in rats. Pharmacol Toxicol. 1996 Dec;79(6):347–356. doi: 10.1111/j.1600-0773.1996.tb00021.x. [DOI] [PubMed] [Google Scholar]
- Tjälve H., Henriksson J. Uptake of metals in the brain via olfactory pathways. Neurotoxicology. 1999 Apr-Jun;20(2-3):181–195. [PubMed] [Google Scholar]
- Ueda F., Raja K. B., Simpson R. J., Trowbridge I. S., Bradbury M. W. Rate of 59Fe uptake into brain and cerebrospinal fluid and the influence thereon of antibodies against the transferrin receptor. J Neurochem. 1993 Jan;60(1):106–113. doi: 10.1111/j.1471-4159.1993.tb05828.x. [DOI] [PubMed] [Google Scholar]
- Underwood B. A., Arthur P. The contribution of vitamin A to public health. FASEB J. 1996 Jul;10(9):1040–1048. [PubMed] [Google Scholar]
- Viteri F. E. A new concept in the control of iron deficiency: community-based preventive supplementation of at-risk groups by the weekly intake of iron supplements. Biomed Environ Sci. 1998 Mar;11(1):46–60. [PubMed] [Google Scholar]
- Wedler F. C. Biological significance of manganese in mammalian systems. Prog Med Chem. 1993;30:89–133. doi: 10.1016/s0079-6468(08)70376-x. [DOI] [PubMed] [Google Scholar]
- Zayed J., Thibault C., Gareau L., Kennedy G. Airborne manganese particulates and methylcyclopentadienyl manganese tricarbonyl (MMT) at selected outdoor sites in Montreal. Neurotoxicology. 1999 Apr-Jun;20(2-3):151–157. [PubMed] [Google Scholar]
- Zhang G., Liu D., He P. [Effects of manganese on learning abilities in school children]. Zhonghua Yu Fang Yi Xue Za Zhi. 1995 May;29(3):156–158. [PubMed] [Google Scholar]
- Zheng W., Ren S., Graziano J. H. Manganese inhibits mitochondrial aconitase: a mechanism of manganese neurotoxicity. Brain Res. 1998 Jul 20;799(2):334–342. doi: 10.1016/s0006-8993(98)00481-8. [DOI] [PMC free article] [PubMed] [Google Scholar]