Abstract
Human epidemiological and animal studies have revealed the long-term effects of malnutrition during gestation and early life on the health of the offspring. The aim of the current review is to survey the different means of achieving fetal malnutrition and its consequences, mainly in animals, and to identify key areas in which to direct future research. We address the impact of various models of a maternal protein-restricted diet and global maternal caloric restriction (either through the reduction of nutrient supply or through mechanic devices), the influence of maternal diabetes, and other maternal causes of fetal damage (maternal infections and toxic food components). More specifically, we enumerate data on how the different insults at different prenatal and early postnatal periods affect and program the development and the function of organs involved in diabetes, hypertension, and cardiovascular disease. Particular emphasis is given to the endocrine pancreas, but insulin-sensitive tissues, kidneys, and vasculature are also analyzed. Where available, the protective effects of maternal food supplementation for fetal organ development and function are discussed. Specific attention is paid to the amino acids profile, and the preventive role of taurine is discussed. Tentative indications about critical time windows for fetal development under different deleterious conditions are presented whenever possible. We also discuss future research and intervention.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aerts L., Holemans K., Van Assche F. A. Maternal diabetes during pregnancy: consequences for the offspring. Diabetes Metab Rev. 1990 Dec;6(3):147–167. doi: 10.1002/dmr.5610060303. [DOI] [PubMed] [Google Scholar]
- Aerts L., Van Assche F. A. Endocrine pancreas in the offspring of rats with experimentally induced diabetes. J Endocrinol. 1981 Jan;88(1):81–88. doi: 10.1677/joe.0.0880081. [DOI] [PubMed] [Google Scholar]
- Aerts L., Van Bree R., Feytons V., Rombauts W., Van Assche F. A. Plasma amino acids in diabetic pregnant rats and in their fetal and adult offspring. Biol Neonate. 1989;56(1):31–39. doi: 10.1159/000242984. [DOI] [PubMed] [Google Scholar]
- Amri K., Freund N., Vilar J., Merlet-Bénichou C., Lelièvre-Pégorier M. Adverse effects of hyperglycemia on kidney development in rats: in vivo and in vitro studies. Diabetes. 1999 Nov;48(11):2240–2245. doi: 10.2337/diabetes.48.11.2240. [DOI] [PubMed] [Google Scholar]
- Anguita R. M., Sigulem D. M., Sawaya A. L. Intrauterine food restriction is associated with obesity in young rats. J Nutr. 1993 Aug;123(8):1421–1428. doi: 10.1093/jn/123.8.1421. [DOI] [PubMed] [Google Scholar]
- Barker D. J., Hales C. N., Fall C. H., Osmond C., Phipps K., Clark P. M. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993 Jan;36(1):62–67. doi: 10.1007/BF00399095. [DOI] [PubMed] [Google Scholar]
- Bennis-Taleb N., Remacle C., Hoet J. J., Reusens B. A low-protein isocaloric diet during gestation affects brain development and alters permanently cerebral cortex blood vessels in rat offspring. J Nutr. 1999 Aug;129(8):1613–1619. doi: 10.1093/jn/129.8.1613. [DOI] [PubMed] [Google Scholar]
- Blondeau B., Garofano A., Czernichow P., Bréant B. Age-dependent inability of the endocrine pancreas to adapt to pregnancy: a long-term consequence of perinatal malnutrition in the rat. Endocrinology. 1999 Sep;140(9):4208–4213. doi: 10.1210/endo.140.9.6960. [DOI] [PubMed] [Google Scholar]
- Burns S. P., Desai M., Cohen R. D., Hales C. N., Iles R. A., Germain J. P., Going T. C., Bailey R. A. Gluconeogenesis, glucose handling, and structural changes in livers of the adult offspring of rats partially deprived of protein during pregnancy and lactation. J Clin Invest. 1997 Oct 1;100(7):1768–1774. doi: 10.1172/JCI119703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bustamante J., Alonso F. J., Lobo M. V., Giné E., Tamarit-Rodriguez J., Solís J. M., Martín del Río R. Taurine levels and localization in pancreatic islets. Adv Exp Med Biol. 1998;442:65–69. doi: 10.1007/978-1-4899-0117-0_8. [DOI] [PubMed] [Google Scholar]
- Cherif H., Reusens B., Ahn M. T., Hoet J. J., Remacle C. Effects of taurine on the insulin secretion of rat fetal islets from dams fed a low-protein diet. J Endocrinol. 1998 Nov;159(2):341–348. doi: 10.1677/joe.0.1590341. [DOI] [PubMed] [Google Scholar]
- Cherif H., Reusens B., Dahri S., Remacle C., Hoet J. J. Stimulatory effects of taurine on insulin secretion by fetal rat islets cultured in vitro. J Endocrinol. 1996 Dec;151(3):501–506. doi: 10.1677/joe.0.1510501. [DOI] [PubMed] [Google Scholar]
- Crace C. J., Swenne I., Milner R. D. Long-term effects on glucose tolerance and insulin secretory response to glucose following a limited period of severe protein or energy malnutrition in young rats. Ups J Med Sci. 1991;96(3):177–183. doi: 10.3109/03009739109179269. [DOI] [PubMed] [Google Scholar]
- Dahlquist G., Gothefors L. The cumulative incidence of childhood diabetes mellitus in Sweden unaffected by BCG-vaccination. Diabetologia. 1995 Jul;38(7):873–874. doi: 10.1007/BF03035306. [DOI] [PubMed] [Google Scholar]
- Dahri S., Reusens B., Remacle C., Hoet J. J. Nutritional influences on pancreatic development and potential links with non-insulin-dependent diabetes. Proc Nutr Soc. 1995 Jul;54(2):345–356. doi: 10.1079/pns19950003. [DOI] [PubMed] [Google Scholar]
- Dahri S., Snoeck A., Reusens-Billen B., Remacle C., Hoet J. J. Islet function in offspring of mothers on low-protein diet during gestation. Diabetes. 1991 Dec;40 (Suppl 2):115–120. doi: 10.2337/diab.40.2.s115. [DOI] [PubMed] [Google Scholar]
- Desai M., Crowther N. J., Ozanne S. E., Lucas A., Hales C. N. Adult glucose and lipid metabolism may be programmed during fetal life. Biochem Soc Trans. 1995 May;23(2):331–335. doi: 10.1042/bst0230331. [DOI] [PubMed] [Google Scholar]
- Fleming J. V., Hay S. M., Harries D. N., Rees W. D. Effects of nutrient deprivation and differentiation on the expression of growth-arrest genes (gas and gadd) in F9 embryonal carcinoma cells. Biochem J. 1998 Feb 15;330(Pt 1):573–579. doi: 10.1042/bj3300573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garofano A., Czernichow P., Bréant B. Beta-cell mass and proliferation following late fetal and early postnatal malnutrition in the rat. Diabetologia. 1998 Sep;41(9):1114–1120. doi: 10.1007/s001250051038. [DOI] [PubMed] [Google Scholar]
- Garofano A., Czernichow P., Bréant B. Effect of ageing on beta-cell mass and function in rats malnourished during the perinatal period. Diabetologia. 1999 Jun;42(6):711–718. doi: 10.1007/s001250051219. [DOI] [PubMed] [Google Scholar]
- Garofano A., Czernichow P., Bréant B. In utero undernutrition impairs rat beta-cell development. Diabetologia. 1997 Oct;40(10):1231–1234. doi: 10.1007/s001250050812. [DOI] [PubMed] [Google Scholar]
- Grace C. J., Swenne I., Kohn P. G., Strain A. J., Milner R. D. Protein-energy malnutrition induces changes in insulin sensitivity. Diabete Metab. 1990 Dec;16(6):484–491. [PubMed] [Google Scholar]
- Hales C. N., Barker D. J. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992 Jul;35(7):595–601. doi: 10.1007/BF00400248. [DOI] [PubMed] [Google Scholar]
- Hales C. N., Desai M., Ozanne S. E., Crowther N. J. Fishing in the stream of diabetes: from measuring insulin to the control of fetal organogenesis. Biochem Soc Trans. 1996 May;24(2):341–350. doi: 10.1042/bst0240341. [DOI] [PubMed] [Google Scholar]
- Hawkins P., Steyn C., McGarrigle H. H., Saito T., Ozaki T., Stratford L. L., Noakes D. E., Hanson M. A. Effect of maternal nutrient restriction in early gestation on development of the hypothalamic-pituitary-adrenal axis in fetal sheep at 0.8-0.9 of gestation. J Endocrinol. 1999 Dec;163(3):553–561. doi: 10.1677/joe.0.1630553. [DOI] [PubMed] [Google Scholar]
- Helgason T., Ewen S. W., Ross I. S., Stowers J. M. Diabetes produced in mice by smoked/cured mutton. Lancet. 1982 Nov 6;2(8306):1017–1022. doi: 10.1016/s0140-6736(82)90052-6. [DOI] [PubMed] [Google Scholar]
- Helgason T., Jonasson M. R. Evidence for a food additive as a cause of ketosis-prone diabetes. Lancet. 1981 Oct 3;2(8249):716–720. doi: 10.1016/s0140-6736(81)91048-5. [DOI] [PubMed] [Google Scholar]
- Holemans K., Gerber R., Meurrens K., De Clerck F., Poston L., Van Assche F. A. Maternal food restriction in the second half of pregnancy affects vascular function but not blood pressure of rat female offspring. Br J Nutr. 1999 Jan;81(1):73–79. [PubMed] [Google Scholar]
- Holemans K., Gerber R., Meurrens K., De Clerck F., Poston L., Van Assche F. A. Maternal food restriction in the second half of pregnancy affects vascular function but not blood pressure of rat female offspring. Br J Nutr. 1999 Jan;81(1):73–79. [PubMed] [Google Scholar]
- Holness M. J., Fryer L. G., Sugden M. C. Protein restriction during early development enhances insulin responsiveness but selectively impairs sensitivity to insulin at low concentrations in white adipose tissue during a later pregnancy. Br J Nutr. 1999 Jun;81(6):481–489. [PubMed] [Google Scholar]
- Holness M. J. The influence of sub-optimal protein nutrition on insulin hypersecretion evoked by high-energy/high-fat feeding in rats. FEBS Lett. 1996 Oct 28;396(1):53–56. doi: 10.1016/0014-5793(96)01067-8. [DOI] [PubMed] [Google Scholar]
- Iglésias-Barreira V., Ahn M. T., Reusens B., Dahri S., Hoet J. J., Remacle C. Pre- and postnatal low protein diet affect pancreatic islet blood flow and insulin release in adult rats. Endocrinology. 1996 Sep;137(9):3797–3801. doi: 10.1210/endo.137.9.8756549. [DOI] [PubMed] [Google Scholar]
- Korang K., Milakofsky L., Hare T. A., Hofford J. M., Vogel W. H. Levels of taurine, amino acids and related compounds in plasma, vena cava, aorta and heart of rats after taurine administration. Pharmacology. 1996 Apr;52(4):263–270. doi: 10.1159/000139391. [DOI] [PubMed] [Google Scholar]
- Langley-Evans S. C., Nwagwu M. Impaired growth and increased glucocorticoid-sensitive enzyme activities in tissues of rat fetuses exposed to maternal low protein diets. Life Sci. 1998;63(7):605–615. doi: 10.1016/s0024-3205(98)00311-7. [DOI] [PubMed] [Google Scholar]
- Langley-Evans S. C., Phillips G. J., Benediktsson R., Gardner D. S., Edwards C. R., Jackson A. A., Seckl J. R. Protein intake in pregnancy, placental glucocorticoid metabolism and the programming of hypertension in the rat. Placenta. 1996 Mar-Apr;17(2-3):169–172. doi: 10.1016/s0143-4004(96)80010-5. [DOI] [PubMed] [Google Scholar]
- Langley-Evans S. C., Welham S. J., Jackson A. A. Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the rat. Life Sci. 1999;64(11):965–974. doi: 10.1016/s0024-3205(99)00022-3. [DOI] [PubMed] [Google Scholar]
- Langley-Evans S. C., Welham S. J., Sherman R. C., Jackson A. A. Weanling rats exposed to maternal low-protein diets during discrete periods of gestation exhibit differing severity of hypertension. Clin Sci (Lond) 1996 Nov;91(5):607–615. doi: 10.1042/cs0910607. [DOI] [PubMed] [Google Scholar]
- Law C. M., Gordon G. S., Shiell A. W., Barker D. J., Hales C. N. Thinness at birth and glucose tolerance in seven-year-old children. Diabet Med. 1995 Jan;12(1):24–29. doi: 10.1111/j.1464-5491.1995.tb02057.x. [DOI] [PubMed] [Google Scholar]
- Leger J., Levy-Marchal C., Bloch J., Pinet A., Chevenne D., Porquet D., Collin D., Czernichow P. Reduced final height and indications for insulin resistance in 20 year olds born small for gestational age: regional cohort study. BMJ. 1997 Aug 9;315(7104):341–347. doi: 10.1136/bmj.315.7104.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis R. M., Batchelor D. C., Bassett N. S., Johnston B. M., Napier J., Skinner S. J. Perinatal growth disturbance in the spontaneously hypertensive rat. Pediatr Res. 1997 Dec;42(6):758–764. doi: 10.1203/00006450-199712000-00007. [DOI] [PubMed] [Google Scholar]
- McCarty R., Fields-Okotcha C. Timing of preweanling maternal effects on development of hypertension in SHR rats. Physiol Behav. 1994 May;55(5):839–844. doi: 10.1016/0031-9384(94)90069-8. [DOI] [PubMed] [Google Scholar]
- Meleady R. A., Graham I. M. Homocysteine and vascular disease: nature or nurture? J Cardiovasc Risk. 1998 Aug;5(4):233–237. [PubMed] [Google Scholar]
- Mellor D. J., Murray L. Effects of placental weight and maternal nutrition on the growth rates of individual fetuses in single and twin bearing ewes during late pregnancy. Res Vet Sci. 1981 Mar;30(2):198–204. [PubMed] [Google Scholar]
- Menser M. A., Forrest J. M., Bransby R. D. Rubella infection and diabetes mellitus. Lancet. 1978 Jan 14;1(8055):57–60. doi: 10.1016/s0140-6736(78)90001-6. [DOI] [PubMed] [Google Scholar]
- Merlet-Bénichou C., Gilbert T., Muffat-Joly M., Lelièvre-Pégorier M., Leroy B. Intrauterine growth retardation leads to a permanent nephron deficit in the rat. Pediatr Nephrol. 1994 Apr;8(2):175–180. doi: 10.1007/BF00865473. [DOI] [PubMed] [Google Scholar]
- Merlet-Bénichou C., Gilbert T., Muffat-Joly M., Lelièvre-Pégorier M., Leroy B. Intrauterine growth retardation leads to a permanent nephron deficit in the rat. Pediatr Nephrol. 1994 Apr;8(2):175–180. doi: 10.1007/BF00865473. [DOI] [PubMed] [Google Scholar]
- Merlet-Bénichou C. Influence of fetal environment on kidney development. Int J Dev Biol. 1999;43(5):453–456. [PubMed] [Google Scholar]
- Murakami S., Yamagishi I., Asami Y., Ohta Y., Toda Y., Nara Y., Yamori Y. Hypolipidemic effect of taurine in stroke-prone spontaneously hypertensive rats. Pharmacology. 1996 May;52(5):303–313. doi: 10.1159/000139395. [DOI] [PubMed] [Google Scholar]
- NAEYE R. L. MALNUTRITION: PROBABLE CAUSE OF FETAL GROWTH RETARDATION. Arch Pathol. 1965 Mar;79:284–291. [PubMed] [Google Scholar]
- Ozanne S. E., Smith G. D., Tikerpae J., Hales C. N. Altered regulation of hepatic glucose output in the male offspring of protein-malnourished rat dams. Am J Physiol. 1996 Apr;270(4 Pt 1):E559–E564. doi: 10.1152/ajpendo.1996.270.4.E559. [DOI] [PubMed] [Google Scholar]
- Ozanne S. E., Wang C. L., Coleman N., Smith G. D. Altered muscle insulin sensitivity in the male offspring of protein-malnourished rats. Am J Physiol. 1996 Dec;271(6 Pt 1):E1128–E1134. doi: 10.1152/ajpendo.1996.271.6.E1128. [DOI] [PubMed] [Google Scholar]
- Petrik J., Reusens B., Arany E., Remacle C., Coelho C., Hoet J. J., Hill D. J. A low protein diet alters the balance of islet cell replication and apoptosis in the fetal and neonatal rat and is associated with a reduced pancreatic expression of insulin-like growth factor-II. Endocrinology. 1999 Oct;140(10):4861–4873. doi: 10.1210/endo.140.10.7042. [DOI] [PubMed] [Google Scholar]
- Phillips I. D., Simonetta G., Owens J. A., Robinson J. S., Clarke I. J., McMillen I. C. Placental restriction alters the functional development of the pituitary-adrenal axis in the sheep fetus during late gestation. Pediatr Res. 1996 Dec;40(6):861–866. doi: 10.1203/00006450-199612000-00014. [DOI] [PubMed] [Google Scholar]
- Reusens-Billen B., Remacle C., Daniline J., Hoet J. J. Cell proliferation in pancreatic islets of rat fetuses and neonates from normal and diabetic mothers. An in vitro and in vivo study. Horm Metab Res. 1984 Nov;16(11):565–571. doi: 10.1055/s-2007-1014853. [DOI] [PubMed] [Google Scholar]
- Robinson J. S., Jones C. T., Kingston E. J. Studies on experimental growth retardation in sheep. The effects of maternal hypoxaemia. J Dev Physiol. 1983 Apr;5(2):89–100. [PubMed] [Google Scholar]
- Rosenberg I. H. Folic acid and neural-tube defects--time for action? N Engl J Med. 1992 Dec 24;327(26):1875–1877. doi: 10.1056/NEJM199212243272609. [DOI] [PubMed] [Google Scholar]
- Rubinstein P., Walker M. E., Fedun B., Witt M. E., Cooper L. Z., Ginsberg-Fellner F. The HLA system in congenital rubella patients with and without diabetes. Diabetes. 1982 Dec;31(12):1088–1091. doi: 10.2337/diacare.31.12.1088. [DOI] [PubMed] [Google Scholar]
- Scaglia L., Cahill C. J., Finegood D. T., Bonner-Weir S. Apoptosis participates in the remodeling of the endocrine pancreas in the neonatal rat. Endocrinology. 1997 Apr;138(4):1736–1741. doi: 10.1210/endo.138.4.5069. [DOI] [PubMed] [Google Scholar]
- Shepherd P. R., Crowther N. J., Desai M., Hales C. N., Ozanne S. E. Altered adipocyte properties in the offspring of protein malnourished rats. Br J Nutr. 1997 Jul;78(1):121–129. doi: 10.1079/bjn19970124. [DOI] [PubMed] [Google Scholar]
- Snoeck A., Remacle C., Reusens B., Hoet J. J. Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol Neonate. 1990;57(2):107–118. doi: 10.1159/000243170. [DOI] [PubMed] [Google Scholar]
- Sturman J. A. Taurine in development. Physiol Rev. 1993 Jan;73(1):119–147. doi: 10.1152/physrev.1993.73.1.119. [DOI] [PubMed] [Google Scholar]
- Swenne I., Borg L. A., Crace C. J., Schnell Landström A. Persistent reduction of pancreatic beta-cell mass after a limited period of protein-energy malnutrition in the young rat. Diabetologia. 1992 Oct;35(10):939–945. doi: 10.1007/BF00401422. [DOI] [PubMed] [Google Scholar]
- Swenne I., Crace C. J., Jansson L. Intermittent protein-calorie malnutrition in the young rat causes long-term impairment of the insulin secretory response to glucose in vitro. J Endocrinol. 1988 Aug;118(2):295–302. doi: 10.1677/joe.0.1180295. [DOI] [PubMed] [Google Scholar]
- Tangalakis K., Roberts F. E., Wintour E. M. The time-course of ACTH stimulation of cortisol synthesis by the immature ovine foetal adrenal gland. J Steroid Biochem Mol Biol. 1992 Jun;42(5):527–532. doi: 10.1016/0960-0760(92)90266-l. [DOI] [PubMed] [Google Scholar]
- Trahair J. F., DeBarro T. M., Robinson J. S., Owens J. A. Restriction of nutrition in utero selectively inhibits gastrointestinal growth in fetal sheep. J Nutr. 1997 Apr;127(4):637–641. doi: 10.1093/jn/127.4.637. [DOI] [PubMed] [Google Scholar]
- Yamaguchi K., Hosokawa Y., Niizeki S., Tojo H., Sato I. Nutritional significance of cysteine dioxygenase on the biological evaluation of dietary protein in growing rats. Prog Clin Biol Res. 1985;179:23–32. [PubMed] [Google Scholar]
- van den Berg M., Franken D. G., Boers G. H., Blom H. J., Jakobs C., Stehouwer C. D., Rauwerda J. A. Combined vitamin B6 plus folic acid therapy in young patients with arteriosclerosis and hyperhomocysteinemia. J Vasc Surg. 1994 Dec;20(6):933–940. doi: 10.1016/0741-5214(94)90230-5. [DOI] [PubMed] [Google Scholar]